Resumo-Aços IF são empregados na fabricação de peças na indústria automobilística. Ao serem transportados e armazenados em forma de bobinas, suas propriedades mecânicas estão sujeitas a alterações por ação das tensões residuais intensificadas pelo próprio peso, o que pode gerar falhas. Este trabalho pretende classificar amostras de aço IF a partir da posição onde elas foram extraídas de uma bobina de armazenamento. Para isso, foram adquiridos sinais de correntes parasitas pulsadas das amostras e técnicas de aprendizado de máquina foram utilizadas para classificação. Com o método proposto, foi obtida uma acurácia de até 86,10% na identificação das classes de interesse.
Boron-manganese steel 22MnB5 is extensively used in structural automotive components. Knowledge about its microstructural evolution during hot stamping and resistance spot welding (RSW) is extremely relevant to guarantee compliance with application requirements. Particularly, corrosion properties are critical to the application of uncoated sheet steels. However, microstructural studies are usually simplified to top-hat geometries, which might not be fully representative of the complex thermomechanical cycles locally faced by a real component. Therefore, the present work brings an extensive characterization of a hot-stamped 22MnB5 automotive B-pillar in terms of microstructure, hardness and corrosion resistance, which were correlated with a reverse engineering of the process using numerical simulation. Physical simulations of the subcritical heat affected zone (SCHAZ) of RSW were done to assess the influence of microstructure on martensite tempering. Results showed that the component undergoes a complex strain distribution along its body during hot stamping. Most heavily strained regions presented higher amounts of ferrite, leading to poorer corrosion resistance, since ferrite behaves as an anode. Physical simulations of the SCHAZ showed that the softening degree due to martensite tempering is solely affected by peak temperature, while other microstructural features appear to exert negligible or no influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.