Abstract. The nervous system is an important regulator of the human body because it adapts our responses to the external environment and provides people the ability of thought, memory, and emotion. PC12 is a cell line that is commonly used to study the behavior of neural differentiation. PC12 cells further differentiate into nerve cells when stimulated by nerve growth factor (NGF), which have neurite, dendrite, and axon, and form synapses with neighboring cells to build neural networks. Micropatterns and electric stimulation can significantly influence cellular attachment, proliferation, orientation, extracellular matrix (ECM) expression, neural differentiation, and cellular motion. We fabricated polycaprolactone (PCL) nanofiber with or without carbon nanotubes (CNTs) by electrospinning and promoted the neural differentiation of PC12 cells by electric stimulation. We used scanning electron microscope (SEM) and fluorescence microscope to observe the NGF-induced growth of PC12 cells on PCL nanofiber. Axon formation and cellular activity expression, that confirm that PC12 cells can grow well on PCL nanofiber, and the gene expressions of MAP1b and GAP43 significantly increased after electric stimulation. Based on the results, the structure of nanofibers containing CNTs can effectively induce neural differentiation of PC12 cells in an electric field. This experimental model can be used for future clinical applications.
Ex vivo engineering of artificial nerve conduit is a suitable alternative clinical treatment for nerve injuries. Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. These cells, when cultured in six-well plates, exhibited a spindle fibroblastic morphology, whereas those under a dynamic culture aggregated into neurosphere-like clusters in the chitosan conduit. In this study, we confirmed that SHEDs efficiently express the neural stem cell marker nestin, the early neural cell marker β-III-tubulin, the late neural marker neuron-specific enolase and the glial cell markers glial fibrillary acidic protein (GFAP) and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). The three-dimensional chitosan conduit and dynamic culture system generated fluid shear stress and enhanced nutrient transfer, promoting the differentiation of SHEDs to neural cells. In particular, the gene expressions of GFAP and CNPase increased by 28- and 53-fold, respectively. This study provides evidence for the dynamic culture of SHEDs during ex vivo neural differentiation and demonstrates its potential for cell therapy in neurological diseases. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.