MicroRNAs (miRNAs), small noncoding RNAs, can control gene expression by binding to their target genes for degradation and/or translational repression. Epigenetic mechanisms are defined as heritable changes in gene expression that do not involve coding sequence modifications. Both mechanisms play an important role in maintaining physiological functions and are also related to disease development. However, few studies report that miRNA-mediated epigenetic regulations are involved in atherosclerosis. In the present study, oxidized low-density lipoprotein (oxLDL) significantly increased primary human aortic smooth muscle cell (HASMC) migration through MMP-2/MMP-9 up-regulation associated with decreased DNA methylation levels. Either mRNA or protein level of DNA methyltransferase 3b (DNMT3b) showed a dose-dependent down-regulation in oxLDL-mediated HASMCs. Knockdown DNMT3b expression enhanced oxLDL-induced DNA demethylation levels of MMP-2/MMP-9. The expression of miRNA-29b (miR-29b), directly targeting DNMT3b, was up-regulated by oxLDL treatment in a dose-dependent manner. OxLDL-mediated MMP-2/MMP-9 up-regulation, DNMT3b down-regulation, and DNA demethylation were all attenuated after knockdown miR-29b expression by antagomiR-29b. We find that oxLDL can up-regulate miR-29b expression, resulting in DNMT3b down-regulation in HASMCs and epigenetically regulated MMP-2/MMP-9 genes involved in cell migration. These results show that miRNA-mediated epigenetic regulation may be a novel mechanism in atherosclerosis.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is originally featured with a strong clustering of mutations in NOTCH3 exons 3–6 and leukoencephalopathy with frequent anterior temporal pole involvement. The present study aims at characterizing the genotypic and phenotypic profiles of CADASIL in Taiwan. One hundred and twelve patients with CADASIL from 95 families of Chinese descents in Taiwan were identified by Sanger sequencing of exons 2 to 24 of NOTCH3. Twenty different mutations in NOTCH3 were uncovered, including 3 novel ones, and R544C in exon 11 was the most common mutation, accounting for 70.5% of the pedigrees. Haplotype analyses were conducted in 14 families harboring NOTCH3 R544C mutation and demonstrated a common haplotype linked to NOTCH3 R544C at loci D19S929 and D19S411. Comparing with CADASIL in most Caucasian populations, CADASIL in Taiwan has several distinct features, including less frequent anterior temporal involvement, older age at symptom onset, higher incidence of intracerebral hemorrhage, and rarer occurrence of migraine. Subgroup analyses revealed that the R544C mutation is associated with lower frequency of anterior temporal involvement, later age at onset and higher frequency of cognitive dysfunction. In conclusion, the present study broadens the spectrum of NOTCH3 mutations and provides additional insights for the clinical and molecular characteristics of CADASIL patients of Han-Chinese descents.
Monocyte chemoattractant protein-1 (MCP-1, also known as chemokine CCL2) is a vital chemokine that mediates inflammation in Alzheimer’s disease (AD). We analyzed the associations between the baseline plasma MCP-1 level, longitudinal cognitive changes, and genetic effects of CCL2 rs1024611 and its receptor, CC-chemokine receptor 2 (CCR2) rs1799864, in AD. In total, 310 AD patients and 66 mild cognitive impairment (MCI) patients were followed for 2 years, and 120 controls were recruited at baseline for comparison. After adjusting for covariates using one-way analysis of covariance, AD patients had higher plasma MCP-1 levels compared with MCI patients and controls, and severe AD patients had the highest levels. After adjusting for covariates using generalized estimating equation analysis, the results showed that the baseline MCP-1 level was significantly correlated with changes in the two-year Mini-Mental Status Examination (p = 0.046). The A allele of CCR2 rs1799864 was associated with a higher MCP-1 level in AD and MCI patients. In conclusion, plasma MCP-1 might reflect the risk and disease course of AD. A higher plasma MCP-1 level is associated with greater severity and faster cognitive decline. Additionally, the CCR2 polymorphism may play a role in the regulation of MCP-1/CCR2 signaling in AD.
Eleven patients with primary thunderclap headache (TCH) were treated with oral nimodipine 30 to 60 mg every 4 hours or IV nimodipine 0.5 to 2 mg/h if the oral regimen failed or images showed cerebral vasospasm. With oral nimodipine, headache did not recur in the nine patients without vasospasm. IV nimodipine was given in two patients with vasospasm, including one who developed ischemic stroke. Nimodipine may be effective for TCH. Vasospasm may warrant IV nimodipine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.