MicroRNAs (miRNAs), small noncoding RNAs, can control gene expression by binding to their target genes for degradation and/or translational repression. Epigenetic mechanisms are defined as heritable changes in gene expression that do not involve coding sequence modifications. Both mechanisms play an important role in maintaining physiological functions and are also related to disease development. However, few studies report that miRNA-mediated epigenetic regulations are involved in atherosclerosis. In the present study, oxidized low-density lipoprotein (oxLDL) significantly increased primary human aortic smooth muscle cell (HASMC) migration through MMP-2/MMP-9 up-regulation associated with decreased DNA methylation levels. Either mRNA or protein level of DNA methyltransferase 3b (DNMT3b) showed a dose-dependent down-regulation in oxLDL-mediated HASMCs. Knockdown DNMT3b expression enhanced oxLDL-induced DNA demethylation levels of MMP-2/MMP-9. The expression of miRNA-29b (miR-29b), directly targeting DNMT3b, was up-regulated by oxLDL treatment in a dose-dependent manner. OxLDL-mediated MMP-2/MMP-9 up-regulation, DNMT3b down-regulation, and DNA demethylation were all attenuated after knockdown miR-29b expression by antagomiR-29b. We find that oxLDL can up-regulate miR-29b expression, resulting in DNMT3b down-regulation in HASMCs and epigenetically regulated MMP-2/MMP-9 genes involved in cell migration. These results show that miRNA-mediated epigenetic regulation may be a novel mechanism in atherosclerosis.
We showed that microRNA-195 plays a role in the cardiovascular system by inhibiting VSMC proliferation, migration, and proinflammatory biomarkers. MicroRNA-195 may have the potential to reduce neointimal formation in patients receiving stenting or angioplasty.
BackgroundEstrogen receptor α (ERα) has been shown to protect against atherosclerosis. Methylation of the ERα gene can reduce ERα expression leading to a higher risk for cardiovascular disease. Recently, microRNAs have been found to regulate DNA methyltransferases (DNMTs) and thus control methylation status in several genes. We first searched for microRNAs involved in DNMT-associated DNA methylation in the ERα gene. We also tested whether statin and a traditional Chinese medicine (San-Huang-Xie-Xin-Tang, SHXXT) could exert a therapeutic effect on microRNA, DNMT and ERα methylation.Methodology/Principal FindingsThe ERα expression was decreased and ERα methylation was increased in LPS-treated human aortic smooth muscle cells (HASMCs) and the aorta from rats under a high-fat diet. microRNA-152 was found to be down regulated in the LPS-treated HASMCs. We validated that microRNA-152 can knock down DNMT1 in HASMCs leading to hypermethylation of the ERα gene. Statin had no effect on microRNA-152, DNMT1 or ERα expression. On the contrary, SHXXT could restore microRNA-152, decrease DNMT1 and increase ERα expression in both cellular and animal studies.Conclusions/SignificanceThe present study showed that microRNA-152 decreases under the pro-atherosclerotic conditions. The reduced microRNA-152 can lose an inhibitory effect on DNA methyltransferase, which leads to hypermethylation of the ERα gene and a decrease of ERα level. Although statin can not reverse these cascade proatherosclerotic changes, the SHXXT shows a promising effect to inhibit this unwanted signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.