Purpose: The proinflammatory cytokine interleukin-32 (IL-32) is a novel tumor marker highly expressed in various human carcinomas, including gastric cancer. However, its effects on prognosis of patients with gastric cancer and cancer metastasis are virtually unknown at present. The main aim of this study was to explore the clinical significance of IL-32 in gastric cancer and further elucidate the molecular mechanisms underlying IL-32-mediated migration and invasion.Experimental Design: Gastric cancer cells with ectopic expression or silencing of IL-32 were examined to identify downstream molecules and establish their effects on cell motility, invasion, and lung metastasis in vivo.Results: IL-32 was significantly upregulated in gastric cancer and positively correlated with aggressiveness of cancer and poor prognosis. Ectopic expression of IL-32 induced elongated morphology and increased cell migration and invasion via induction of IL-8, VEGF, matrix metalloproteinase 2 (MMP2), and MMP9 expression via phosphor-AKT/phospho-glycogen synthase kinase 3b/active b-catenin as well as hypoxiainducible factor 1a (HIF-1a) signaling pathways. Conversely, depletion of IL-32 in gastric cancer cells reversed these effects and decreased lung colonization in vivo. Examination of gene expression datasets in oncomine and staining of gastric cancer specimens demonstrated the clinical significance of IL-32 and its downstream molecules by providing information on their coexpression patterns.Conclusions: IL-32 contributes to gastric cancer progression by increasing the metastatic potential resulting from AKT, b-catenin, and HIF-1a activation. Our results clearly suggest that IL-32 is an important mediator for gastric cancer metastasis and independent prognostic predictor of gastric cancer. Clin Cancer Res; 20(9); 2276-88. Ó2014 AACR.
The nature of vertical heating of disk stars in the inner as well as the outer region of disk galaxies is studied. The galactic bar (which is the strongest non-axisymmetric pattern in the disk) is shown to be a potential source of vertical heating of the disk stars in the inner region. Using a nearly self-consistent high-resolution N-body simulation of disk galaxies, the growth rate of the bar potential is found to be positively correlated with the vertical heating exponent in the inner region of galaxies. We also characterize the vertical heating in the outer region where the disk dynamics is often dominated by the presence of transient spiral waves and mild bending waves. Our simulation results suggest that the non-axisymmetric structures are capable of producing the anisotropic heating of the disk stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.