ObjectAlthough craniopharyngiomas are benign intracranial tumors, their high recurrence rates and intimate associations with surrounding neurovascular structures make gross tumor resection challenging. Stereotactic radiosurgery has been introduced as a valuable adjuvant therapy for recurrent or residual craniopharyngiomas. However, studies with large patient populations documenting long-term survival and progression-free survival rates are rare in the literature. The current study aims to report the long-term radiosurgical results and to define the prognostic factors in a large cohort of patients with a craniopharyngioma.MethodsA total of 137 consecutive patients who underwent 162 sessions of Gamma Knife surgery (GKS) treatments at the Taipei Veterans General Hospital between 1993 and 2012 were analyzed. The patients' median age was 30.1 years (range 1.5–84.9 years), and the median tumor volume was 5.5 ml (range 0.2–28.4 ml). There were 23 solid (16.8%), 23 cystic (16.8%), and 91 mixed solid and cystic (66.4%) craniopharyngiomas. GKS was indicated for residual or recurrent craniopharyngiomas. The median radiation dose was 12 Gy (range 9.5–16.0 Gy) at a median isodose line of 55% (range 50%–78%).ResultsAt a median imaging follow-up of 45.7 months after GKS, the rates of tumor control were 72.7%, 73.9%, and 66.3% for the solid, cystic, and mixed tumors, respectively. The actuarial progression-free survival rates plotted by the Kaplan-Meier method were 70.0% and 43.8% at 5 and 10 years after radiosurgery, respectively. After repeated GKS, the actuarial progression-free survival rates were increased to 77.3% and 61.2% at 5 and 10 years, respectively. The overall survival rates were 91.5% and 83.9% at the 5- and 10-year follow-ups, respectively. Successful GKS treatment can be predicted by tumor volume (p = 0.011). Among the 137 patients who had clinical follow-up, new-onset or worsened pituitary deficiencies were detected in 11 patients (8.0%). Two patients without tumor growth had a worsened visual field, and 1 patient had a new onset of third cranial nerve palsy.ConclusionsThe current study suggests that GKS is a relatively safe modality for the treatment of recurrent or residual craniopharyngiomas, and it is associated with improved tumor control and reduced in-field recurrence rates. Acceptable rates of complications occurred.
Research on optical computing has recently attracted significant attention due to the transformative advances in machine learning. Among different approaches, diffractive optical networks composed of spatially-engineered transmissive surfaces have been demonstrated for all-optical statistical inference and performing arbitrary linear transformations using passive, free-space optical layers. Here, we introduce a polarization-multiplexed diffractive processor to all-optically perform multiple, arbitrarily-selected linear transformations through a single diffractive network trained using deep learning. In this framework, an array of pre-selected linear polarizers is positioned between trainable transmissive diffractive materials that are isotropic, and different target linear transformations (complex-valued) are uniquely assigned to different combinations of input/output polarization states. The transmission layers of this polarization-multiplexed diffractive network are trained and optimized via deep learning and error-backpropagation by using thousands of examples of the input/output fields corresponding to each one of the complex-valued linear transformations assigned to different input/output polarization combinations. Our results and analysis reveal that a single diffractive network can successfully approximate and all-optically implement a group of arbitrarily-selected target transformations with a negligible error when the number of trainable diffractive features/neurons (N) approaches $$N_pN_iN_o$$ N p N i N o , where Ni and No represent the number of pixels at the input and output fields-of-view, respectively, and Np refers to the number of unique linear transformations assigned to different input/output polarization combinations. This polarization-multiplexed all-optical diffractive processor can find various applications in optical computing and polarization-based machine vision tasks.
With the introduction of the minimally invasive techniques and the evolution of the neuroendoscope and hemostatic agents, the median operative time and blood loss have been significantly decreased. Although the hematoma evacuation rates were similar between the endoscope (90%) and craniotomy (85%) groups, the median intensive care unit stay was decreased from 11 days to 6 days due to reduced surgical invasiveness. This represents an important advancement in treating spontaneous supratentorial ICH, and provides a measured preview of the promising results that can be expected in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.