In this letter, we treat a rod-shaped virus as a free homogenous nanorod and identify its confined acoustic vibration modes that can cause strong resonant microwave absorption through electric dipolar excitation with a core-shell charge distribution. They are found to be the n = 4N-2 modes of the longitudinal modes of the nanorods, where N is an integer starting from 1 and n is the mode order quantum number. This study was confirmed by measuring the microwave absorption spectra of white spot syndrome virus (WSSV), which is a rod-shaped virus. This is also the first study to identify the “dipolar-like” mode in a rod-shaped nano-object. Our study is not only an important step to achieve rapid and sensitive detection of rod-shaped viruses based on their microwave spectroscopic features and a non-contact method to measure the Young’s modulus of rod-shaped viruses, but also is critical to formulate an efficient epidemic prevention strategy to deactivate viruses with the structure-resonant microwaves.
Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and an amphiphilic polylactide-poly(ethylene glycol) (PLA-PEG) diblock copolymer was synthesized. The molar ratio of PCL/PLA-PEG was 9:1 with different PLA chain lengths. The PU nanoparticles were characterized by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and rheological analysis. The water contact angle measurement, infrared spectroscopy, wide angle X-ray scattering (WAXS), thermal and mechanical analyses were conducted on PU films. Significant changes in physio-chemical properties were observed for PUs containing 10 mol % of amphiphilic blocks. The water contact angle was reduced to 12˝-13˝, and the degree of crystallinity was 5%-10%. The PU dispersions underwent sol-gel transition upon the temperature rise to 37˝C. The gelation time increased as the PLA chain length increased. In addition, the fractal dimension of each gel was close to that of a percolation cluster. Moreover, PU4 with a solid content of 26% could support the proliferation of human mesenchymal stem cells (hMSCs). Therefore, thermo-responsive hydrogels with tunable properties are promising injectable materials for cell or drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.