Increasing numbers of explanatory variables tend to result in information redundancy and “dimensional disaster” in the quantitative remote sensing of forest aboveground biomass (AGB). Feature selection of model factors is an effective method for improving the accuracy of AGB estimates. Machine learning algorithms are also widely used in AGB estimation, although little research has addressed the use of the categorical boosting algorithm (CatBoost) for AGB estimation. Both feature selection and regression for AGB estimation models are typically performed with the same machine learning algorithm, but there is no evidence to suggest that this is the best method. Therefore, the present study focuses on evaluating the performance of the CatBoost algorithm for AGB estimation and comparing the performance of different combinations of feature selection methods and machine learning algorithms. AGB estimation models of four forest types were developed based on Landsat OLI data using three feature selection methods (recursive feature elimination (RFE), variable selection using random forests (VSURF), and least absolute shrinkage and selection operator (LASSO)) and three machine learning algorithms (random forest regression (RFR), extreme gradient boosting (XGBoost), and categorical boosting (CatBoost)). Feature selection had a significant influence on AGB estimation. RFE preserved the most informative features for AGB estimation and was superior to VSURF and LASSO. In addition, CatBoost improved the accuracy of the AGB estimation models compared with RFR and XGBoost. AGB estimation models using RFE for feature selection and CatBoost as the regression algorithm achieved the highest accuracy, with root mean square errors (RMSEs) of 26.54 Mg/ha for coniferous forest, 24.67 Mg/ha for broad-leaved forest, 22.62 Mg/ha for mixed forests, and 25.77 Mg/ha for all forests. The combination of RFE and CatBoost had better performance than the VSURF–RFR combination in which random forests were used for both feature selection and regression, indicating that feature selection and regression performed by a single machine learning algorithm may not always ensure optimal AGB estimation. It is promising to extending the application of new machine learning algorithms and feature selection methods to improve the accuracy of AGB estimates.
In this work, the deformation of Zr2Cu metallic glass (MG) under uniaxial tensile stress was investigated at the atomic level using a series of synchrotron radiation techniques combined with molecular dynamics simulation. A new approach to the quantitative detection of free volumes in MGs was designed and it was found that free volumes increase in the elastic stage, slowly expand in the yield stage, and finally reach saturation in the plastic stage. In addition, in different regions of the MG model, free volumes exhibited inhomogeneity under stress, in terms of size, density, and distribution. In particular, the expansion of free volumes in the center region was much more rapid than those in the other regions. It is interesting that the density of free volumes in the center region abnormally decreased with strain. It was revealed that the atomic-level stress between different regions may contribute to the inhomogeneity of free volumes under stress. In addition, the inhomogeneous change of free volumes during the deformation was confirmed by the evolution of local atomic shear strains in different regions. The present work provides in-depth insight into the deformation mechanisms of MGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.