Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control.DOI: http://dx.doi.org/10.7554/eLife.10288.001
Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes.
Summary Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (ARE) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL’s partial functions but regulates an additional gene-expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR- V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.
BackgroundWhether or not hepatitis B virus (HBV) genotypes, mutations, and viral loads determine outcomes for patients with HBV-induced hepatocellular carcinoma (HCC) remains controversial.AimsTo study the influence of HBV viral factors on prognoses for patients with HBV-induced HCC after resection surgery and investigate if antiviral therapy could counteract the adverse effects of viral factors.MethodsA total of 333 HBV-related HCC patients who underwent tumor resection were enrolled retrospectively. Serum HBV DNA levels, mutations, anti-viral therapy, and other clinical variables were analyzed for their association with post-operative recurrence.ResultsAfter a median follow-up of 45.9 months, 208 patients had HCC recurrence after resection. The 5-year overall survival and recurrence-free survival rates were 55.4% and 35.3%, respectively. Multivariate analysis showed indocyanine green retention rate at 15 minutes >10%, gamma-glutamyltransferase (GGT) level >60 U/L, macroscopic and microscopic venous invasion, and the absence of anti-viral therapy were significant risk factors for recurrence. Anti-viral therapy could decrease recurrence in patients with early stage HCC, but the effect was less apparent in those with the Barcelona-Clinic Liver Cancer stage C HCC. For patients without antiviral therapy after resection, serum HBV DNA levels >106 copies/mL, GGT >60 U/L, and macroscopic and microscopic venous invasion were significant risk factors predicting recurrence. Among the 216 patients without anti-viral therapy but with complete HBV surface gene mapping data, 73 were with pre-S deletion mutants. Among patients with higher serum HBV DNA levels, those with pre-S deletion had significantly higher rates of recurrence. Moreover, multivariate analysis showed multi-nodularity, macroscopic venous invasion, cirrhosis, advanced tumor cell differentiation, and pre-S deletion were significant risk factors predictive of recurrence.ConclusionsOngoing HBV viral replication and pre-S deletion are crucial for determining post-operative tumor recurrence. Anti-viral therapy can help reduce recurrence and improve prognosis, especially for those with early stage HCC.
Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.