This paper presents an attempt to employ the mask language modeling approach of BERT to pre-train a 12-layer Transformer model over 4,166 pieces of polyphonic piano MIDI files for tackling a number of symbolic-domain discriminative music understanding tasks. These include two note-level classification tasks, i.e., melody extraction and velocity prediction, as well as two sequence-level classification tasks, i.e., composer classification and emotion classification. We find that, given a pretrained Transformer, our models outperform recurrent neural network based baselines with less than 10 epochs of fine-tuning. Ablation studies show that the pre-training remains effective even if none of the MIDI data of the downstream tasks are seen at the pre-training stage, and that freezing the self-attention layers of the Transformer at the fine-tuning stage slightly degrades performance. All the five datasets employed in this work are publicly available, as well as checkpoints of our pre-trained and fine-tuned models. As such, our research can be taken as a benchmark for symbolic-domain music understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.