Security functions are usually deployed on proprietary hardware, which makes the delivery of security service inflexible and of high cost. Emerging technologies such as software-defined networking and network function virtualization go in the direction of executing functions as software components in virtual machines or containers provisioned in standard hardware resources. They enable network to provide customized security service by deploying Security Service Chain (SSC), which refers to steering flow through multiple security functions in a particular order specified by individual user or application. However, SSC Deployment Problem (SSC-DP) needs to be solved. It is a challenging problem for various reasons, such as the heterogeneity of instances in terms of service capacity and resource demand. In this paper, we propose an SSC-based approach to deliver security service to users without worrying about physical locations of security functions. For SSC-DP, we present a three-phase method to solve it while optimizing network and security resource allocation. The presented method allows network to serve a large number of flows and minimizes the latency seen by flows. Comparative experiments on the fat-tree and Waxman topologies show that our method performs better than other heuristics under a wide range of network conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.