Nanoporous metals (NPMs) have proven to be all-round candidates in versatile and diverse applications. In this decade, interest has grown in the fabrication, characterization and applications of these intriguing materials. Most existing reviews focus on the experimental and theoretical works rather than the numerical simulation. Actually, with numerous experiments and theory analysis, studies based on computer simulation, which may model complex microstructure in more realistic ways, play a key role in understanding and predicting the behaviors of NPMs. In this review, we present a comprehensive overview of the computer simulations of NPMs, which are prepared through chemical dealloying. Firstly, we summarize the various simulation approaches to preparation, processing, and the basic physical and chemical properties of NPMs. In this part, the emphasis is attached to works involving dealloying, coarsening and mechanical properties. Then, we conclude with the latest progress as well as the future challenges in simulation studies. We believe that highlighting the importance of simulations will help to better understand the properties of novel materials and help with new scientific research on these materials.
We developed a general method based on fluorescence microscopy to characterize the interface dissolution in multi-layer organic light-emitting diodes (OLEDs) by blade coating. A sharp bi-layer edge was created before blade coating, with the bottom layer being insoluble and top layer soluble. After blade coating, fluorescence images showed that the edge of the top layer shifted when the layer dissolved completely, whereas the bottom layer's edge remained in place as a positioning mark. The dissolution depth was determined to be 15–20 nm when the emissive-layer host of 2,6-bis (3-(9H-carbazol-9-yl)phenyl) pyridine (26DCzPPy) was coated on the hole-transport layer of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine(NPB), which was consistent with a sudden drop in efficiency of orange OLEDs with layer thickness below 20 nm. Thus, the layer thickness of OLEDs was optimized to stay more than 20 nm for blade coating. For a two-color white OLED with the structure TCTA/26DCzPPy:PO-01-TB:FIrpic/TPBI, efficiency was 24 cd/A and 8.5 lm/W at 1000 cd/m2. For a three-color white OLED with Os(fptz)2(dhpm) added as the emitter, the efficiency was 12.3 cd/A and 3.7 lm/W at 1000 cd/m2. For a green device with the structure TCTA/26DCzPPy:Ir(mppy)3/TPBI, the efficiency was 41.9 cd/A and 23.4 lm/W at 1000 cd/m2.
Wire spinning, which is a deformation process of great complexity in laying head pipe, was simulated using MSC. Marc, a software for finite element analysis, with the aid of production data collected in a high-speed wire spinning production line. The stress condition and the temperature distribution of the laying head inner wall, under the condition of high speed dry sliding friction, were obtained. The effects of different feed speeds on the contact stress and the transient temperature of the easily-wear part were analyzed. The simulation result coincides with the actual wear condition in the laying head pipe, indicating the soundness of the finite element model and making a contribution to optimizing the special curve of the laying head pipe and the finished rolling speed.
This paper introduces working principle of screw oscillating hydraulic cylinder. Structure parameters and process parameters influence on mechanical efficiency is analyzed, simultaneously, structure parameters and process parameters influence on volumetric efficiency is also analyzed. the maximum mechanical efficiency and optimal spiral angle are acquired. Total transmission efficiency model is established. Transmission efficiency experimental test is carried out, experiment test efficiency is basically in accordance with calculated efficiency.
The five-octave mill stochastic dynamics model was established, and then constructed the virtual rolling force excitation, converted random excitation into the rolling force deterministic harmonic excitation by taking advantage of pseudo-excitation method, finally the variance and power spectral density dynamic random changes in the roll gap was Obtained . The results show that the emergence degree of rolled-strip oscillation marks is proportional to random rolling force power spectral density, and in over the five-octave frequency, the roll gap’s dynamic variance no longer change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.