Droplet-based "digital" microfluidics technology has now come of age and software-controlled biochips for healthcare applications are starting to emerge. However, today's digital microfluidic biochips suffer from the drawback that there is no feedback to the control software from the underlying hardware platform. Due to the lack of precision inherent in biochemical experiments, errors are likely during droplet manipulation, but error recovery based on the repetition of experiments leads to wastage of expensive reagents and hard-to-prepare samples. By exploiting recent advances in the integration of optical detectors (sensors) in a digital microfluidics biochip, we present a "physicalaware" system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure the biochip. A cyberphysical re-synthesis technique is used to recompute electrode-actuation sequences, thereby deriving new schedules, module placement, and droplet routing pathways, with minimum impact on the time-to-response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.