Dietary habits are crucial in the progression of hepatic lipid accumulation and nonalcoholic fatty liver disease (NAFLD). However, there are limited studies using 1H-magnetic resonance spectroscopy (1H-MRS) and dual-echo in-phase and out-phase magnetic resonance spectroscopy imaging (dual-echo MRI) to assess the effects of dietary nutrient intakes on hepatic lipid contents. In the present study, we recruited 36 female adults (NAFLD:control = 19:17) to receive questionnaires and medical examinations, including dietary intakes, anthropometric and biochemical measurements, and 1H-MRS and dual-echo MRI examinations. NAFLD patients were found to consume diets higher in energy, protein, fat, saturated fatty acid (SFA), and polyunsaturated fatty acid (PUFA). Total energy intake was positively associated with hepatic fat fraction (HFF) and intrahepatic lipid (IHL) after adjustment for age and body-mass index (BMI) (HFF: β = 0.24, p = 0.02; IHL: β = 0.38, p = 0.02). Total fat intake was positively associated with HFF and IHL after adjustment for age, BMI and total energy intake (HFF: β = 0.36, p = 0.03; IHL: β = 0.42, p = 0.01). SFA intake was positively associated with HFF and IHL after adjustments (HFF: β = 0.45, p = 0.003; IHL: β = 1.16, p = 0.03). In conclusion, hepatic fat content was associated with high energy, high fat and high SFA intakes, quantified by 1H-MRS and dual-echo MRI in our population. Our findings are useful to provide dietary targets to prevent the hepatic lipid accumulation and NAFLD.
Purpose. To evaluate the efficacy of field-of-view (FOV) optimized and constrained undistorted single shot (FOCUS) with IVIM in 3T MRI in the grading of patients with locally advanced rectal cancer. Methods. From January 1st to December 31st, 2019, patients with locally advanced rectal cancer were retrieved. FOCUS DWI and FOCUS IVIM were obtained. Apparent diffusion coefficient (ADC) and IVIM parameters including mean true diffusion coefficient ( D ), pseudodiffusion coefficient associated with blood flow ( D ∗ ), and perfusion fraction ( f ) of the tumor parenchyma and normal rectal wall, as well as the normalized tumor parameters by corresponding normal intestinal wall parameters (ADCNOR, D NOR , D ∗ NOR , and f NOR ), were compared between the well/moderately differentiated and poorly differentiated groups by Student’s t -test. The relationship between the above parameters and the histologic grade was analyzed using Spearman’s correlation test, with the ROC curve generated. Results. Eighty-eight patients (aged 31 to 77 years old, mean = 56 ) were included for analysis. D tumor and f tumor were positively correlated with the tumor grade ( r = 0.483 , p < 0.001 and r = 0.610 , p < 0.001 , respectively). All the normalized parameters (ADCNOR, D NOR , D ∗ NOR , and f NOR ) were positively correlated with the tumor grade ( r = 0.267 , p = 0.007 ; r = 0.564 , p = 0.001 ; r = 0.414 , p = 0.005 ; and r = 0.605 , p < 0.001 , respectively). The best discriminative parameter was the f tumor value, and the area under the ROC curve was 0.927. With a cut-off value of 22.0%, f tumor had a sensitivity of 88.9% and a specificity of 100%. Conclusion. FOCUS IVIM-derived parameters and normalized parameters are useful for predicting the histologic grade in rectal cancer patients.
A novel valine-based isocyanonaphthalene (NpI) was designed and synthesized by using an easy method and enabled the selective fluorescence detection of Hg2+. The chemodosimeter can display an immediate turn-on fluorescence response (500-fold) towards target metal ions upon the Hg2+-mediated conversion of isocyano to amino within NpI. Based on this specific reaction, the fluorescence-enhancement probe revealed a high sensitivity toward Hg2+ over other common metal ions and exhibited excellent aqueous solubility, good antijamming capability, high sensitivity (detection limit: 14.2 nM), and real-time detection. The response mechanism of NpI was supported by NMR spectroscopy, MS analysis and DFT theoretical calculation using various techniques. Moreover, a dipeptidomimetic NpI probe was successfully applied to visualize intracellular Hg2+ in living cells and monitor Hg2+ in real water samples with good recoveries and small relative standard deviations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.