Skeletal muscle atrophy and weakness are thought to be stimulated by tumor necrosis factor alpha (TNF-alpha) in a variety of chronic diseases. However, little is known about the direct effects of TNF-alpha on differentiated skeletal muscle cells or the signaling mechanisms involved. We have tested the effects of TNF-alpha on the mouse-derived C2C12 muscle cell line and on primary cultures from rat skeletal muscle. TNF-alpha treatment of differentiated myotubes stimulated time- and concentration-dependent reductions in total protein content and loss of adult myosin heavy chain (MHCf) content; these changes were evident at low TNF-alpha concentrations (1-3 ng/ml) that did not alter muscle DNA content and were not associated with a decrease in MHCf synthesis. TNF-alpha activated binding of nuclear factor kappaB (NF-kappaB) to its targeted DNA sequence and stimulated degradation of I-kappaBalpha, an NF-kappaB inhibitory protein. TNF-alpha stimulated total ubiquitin conjugation whereas a 26S proteasome inhibitor (MG132 10-40 microM) blocked TNF-alpha activation of NF-kappaB. Catalase 1 kU/ml inhibited NF-kappaB activation by TNF-alpha; exogenous hydrogen peroxide 200 microM activated NF-kappaB and stimulated I-kappaBalpha degradation. These data demonstrate that TNF-alpha directly induces skeletal muscle protein loss, that NF-kappaB is rapidly activated by TNF-alpha in differentiated skeletal muscle cells, and that TNF-alpha/NF-kappaB signaling in skeletal muscle is regulated by endogenous reactive oxygen species.
BackgroundCachexia and muscle atrophy are common consequences of cancer and chemotherapy administration. The novel hormone ghrelin has been proposed as a treatment for this condition. Increases in food intake and direct effects on muscle proteolysis and protein synthesis are likely to mediate these effects, but the pathways leading to these events are not well understood.MethodsWe characterized molecular pathways involved in muscle atrophy induced by Lewis lung carcinoma (LLC) tumour implantation in c57/bl6 adult male mice and by administration of the chemotherapeutic agent cisplatin in mice and in C2C12 myotubes. The effects of exogenous ghrelin administration and its mechanisms of action were examined in these settings.ResultsTumour implantation and cisplatin induced muscle atrophy by activating pro-inflammatory cytokines, p38-C/EBP-β, and myostatin, and by down-regulating Akt, myoD, and myogenin, leading to activation of ubiquitin-proteasome-mediated proteolysis and muscle weakness. Tumour implantation also increased mortality. In vitro, cisplatin up-regulated myostatin and atrogin-1 by activating C/EBP-β and FoxO1/3. Ghrelin prevented these changes in vivo and in vitro, significantly increasing muscle mass (P < 0.05 for LLC and P < 0.01 for cisplatin models) and grip strength (P = 0.038 for LLC and P = 0.001 for cisplatin models) and improving survival (P = 0.021 for LLC model).ConclusionGhrelin prevents muscle atrophy by down-regulating inflammation, p38/C/EBP-β/myostatin, and activating Akt, myogenin, and myoD. These changes appear, at least in part, to target muscle cells directly. Ghrelin administration in this setting is associated with improved muscle strength and survival.
Cachexia, characterized by muscle wasting, is a major contributor to cancer-related mortality. However, the key cachexins that mediate cancer-induced muscle wasting remain elusive. Here, we show that tumor-released extracellular Hsp70 and Hsp90 are responsible for tumor’s capacity to induce muscle wasting. We detected high-level constitutive release of Hsp70 and Hsp90 associated with extracellular vesicles (EVs) from diverse cachexia-inducing tumor cells, resulting in elevated serum levels in mice. Neutralizing extracellular Hsp70/90 or silencing Hsp70/90 expression in tumor cells abrogates tumor-induced muscle catabolism and wasting in cultured myotubes and in mice. Conversely, administration of recombinant Hsp70 and Hsp90 recapitulates the catabolic effects of tumor. In addition, tumor-released Hsp70/90-expressing EVs are necessary and sufficient for tumor-induced muscle wasting. Further, Hsp70 and Hsp90 induce muscle catabolism by activating TLR4, and are responsible for elevation of circulating cytokines. These findings identify tumor-released circulating Hsp70 and Hsp90 as key cachexins causing muscle wasting in mice.
Recently, we described a splice variant of the human natriuretic peptide receptor type B (NPR-Bi) in human proximal tubule cells [immortalized human kidney epithelial cells (IHKE-1) that lacks a functional guanylate cyclase domain (Hirsch JR, Meyer M, Mägert HJ, Forssmann WG, Mollerup S, Herter P, Weber G, Cermak R, Ankorina-Stark I, Schlatter E, and Kruhøffer M. J Am Soc Nephrol 10: 472-480, 1999). Its signaling pathway does not include cGMP, cAMP, or Ca2+ but leads to inhibition of K+ channels. In patch-clamp experiments, effects of tyrosine kinase receptor blockers on C-type natriuretic peptide (CNP)-mediated depolarizations of membrane voltages (Vm) of IHKE-1 cells were tested. The epidermal growth factor (EGF) receptor blocker genistein (10 microM) abolished the effect of CNP (0.2 +/- 0.4 mV, n = 7), and comparable results were obtained with 10 microM daidzein (n = 8). Aminogenistein (10 microM, n = 5) and tyrphostin AG1295 (10 microM, n = 5) had no significant effects. EGF (1 nM) hyperpolarized cells by -5.3 +/- 0.8 mV (n = 5). This effect was completely blocked by genistein or daidzein. The Cl- channel blocker NPPB (10 microM, n = 5) inhibited the EGF-mediated hyperpolarization. mRNA expression of NPR-B and NPR-Bi shows reversed patterns along the human nephron. NPR-B is highly expressed in glomeruli and proximal tubules, whereas NPR-Bi shows strong signals in the distal nephron. Expression of NPR-Bi in the cortical collecting duct was also confirmed with immunohistochemistry. In other human tissues, NPR-Bi shows strongest expression in pancreas and lung, whereas in the heart and liver NPR-B is the dominating receptor. In conclusion, CNP inhibits an apical K+ channel in IHKE-1 cells independently of cGMP and so far this effect can only be blocked by genistein and daidzein. Tyrosine phosphorylation might be the missing link in the signaling pathway of CNP/NPR-Bi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.