PURPOSE-Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS-The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Shen et al.
The antioxidant haptoglobin (Hp) is an acute-phase protein responsive to infectious and inflammatory diseases. Hp and somatic cell counts (SCC) are sharply elevated in bovine milk following intramammary administration of endotoxin or bacteria. However, the sources of milk Hp responsible for such increases are not fully understood. The purpose of this study was to define the source of milk Hp from dairy cows with naturally occurring mastitis. Quarter milk samples selected from 50 dairy cows were separated into four groups according to SCC as group A: < 100 (n = 19); B: 100–200 (n = 10); C: 201–500 (n = 10); and D: > 500 × 103 (n = 11) cells/mL. Our results reveal that milk Hp concentrations were correlated with SCC (r = 0.742; P < 0.01), and concentrations in group D were ~10-fold higher than in group A. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicates that the milk somatic cells from group D were not only capable of synthesizing Hp but could also markedly increase Hp mRNA expression. Western blot, immunocytochemistry, double confocal immunofluorescence, and Hp releasing experiments demonstrate that neutrophils were associated with the biosynthesis and release of Hp in milk. It further shows that Hp was significantly elevated in the epithelium of mammary gland tissue with mastitis and was also expressed in the cultured mammary epithelial cells. We propose that neutrophils and epithelial cells may play an essential role in elevating milk Hp in addition to previous suggestions that Hp may be derived from mammary tissues and circulation.
The search for natural and efficacious antineoplastic drugs, with minimal toxicity and side effects, is an important part of antitumor drug research and development. Tanshinone IIA is the most evaluated lipophilic active component of Salvia miltiorrhiza. Tanshinone IIA is a path-breaking traditional drug applied in cardiovascular treatment. It has also been found that tanshinone IIA plays an important role in the digestive, respiratory and circulatory systems, as well as in other tumor diseases. Tanshinone IIA significantly inhibits the proliferation of several types of tumors, blocks the cell cycle, induces apoptosis and autophagic death, in addition to inhibiting cell migration and invasion. Among these, the regulation of tumor-cell apoptosis signaling pathways is the key breakthrough point in several modes of antitumor therapy. The PI3K/AKT/MTOR signaling pathway and the JNK pathway are the key pathways for tanshinone IIA to induce tumor cell apoptosis. In addition to glycolysis, reactive oxygen species and signal transduction all play an active role with the participation of tanshinone IIA. Endogenous apoptosis is considered the main mechanism of tumor apoptosis induced by tanshinone IIA. Multiple pathways and targets play a role in the process of endogenous apoptosis. Tanshinone IIA can protect chemotherapy drugs, which is mainly reflected in the protection of the side effects of chemotherapy drugs, such as neurotoxicity and inhibition of the hematopoietic system. Tanshinone IIA also has a certain regulatory effect on tumor angiogenesis, which is mainly manifested in the control of hypoxia. Our findings indicated that tanshinone IIA is an effective treatment agent in the cardiovascular field and plays a significant role in antitumor therapeutics. This paper reviews the pharmacological potential and inhibitory effect of tanshinone IIA on cancer. It is greatly anticipated that tanshinone IIA will be employed as an adjuvant in the treatment of various cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.