This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations' ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15.
Abstract:We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic Assignment Problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate the RLT3 lower bound exactly, but approximates it very closely and reaches it in some instances. For Nugent problem instances up to size 24, our RLT3-based lower bound calculation solves these problem instances exactly or serves to verify the optimal value. Calculating lower bounds for problems sizes larger than size 25 still presents a challenge due to the large memory needed to implement the RLT3 formulation. Our presentation emphasizes the steps taken to significantly conserve memory by using the numerous problem symmetries in the RLT3 formulation of the QAP.
NotationEntries of a matrix E of size mxnx…xp, indexed by i,j,…,k, are denoted e ij…k . Conversely, given numbers , one can form a corresponding matrix of appropriate size. Z(P) will denote the optimal value of optimization problem (P).
The Multi-Story Space Assignment Problem (MSAP) is an innovative formulation of the multi-story facility assignment problem that allows one to model the location of departments of unequal size within multi-story facilities as a Generalized Quadratic 3-dimensional Assignment Problem (GQ3AP). Not only can the MSAP generate the design of the location of the departments in the facility, the MSAP also includes the evacuation planning for the facility. The formulation, background mathematical development, and computational experience with a branch and bound algorithm for the MSAP are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.