Periodontal tissue damage, accompanied by the degradation and destruction of periodontal tissue collagen, is one of the most clinically common complications and difficulty self-repair in patients with diabetes. Human periodontal ligament stem cells (PDLSC) are the undifferentiated mesenchymal cells that persist in the periodontal ligament after development of periodontal tissue and the ability of PDLSC osteogenic differentiation is responsible for repairing periodontal tissue defects. However, the reasons of high glucose environment in diabetic patients inhibiting PDLSC to repair periodontal tissues are unclear. To address these issues, we propose exposing PDLSC to high-sugar mimics the diabetic environment and investigating the activity of osteogenic differentiation and adipogenic differentiation of PDLSC. At the cellular level, high glucose can promote the adipogenic differentiation and inhibit osteogenic differentiation to decrease the self-repair ability of PDLSC in periodontal tissues. Mechanistically at the molecular level, these effects are elicited via regulating the mRNA and protein expression of C/EBPβ, PPAR-γ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.