Monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9) are involved in vascular inflammation. We tested the hypothesis, and explored the underlining mechanisms that cilostazol, a phosphodiesterase 3 inhibitor with antiplatelet and antithrombotic properties, inhibits lipopolysaccharide (LPS)-induced MCP-1 and MMP-9 expression. In a rabbit aorta balloon-injury model, administration of LPS increased macrophage infiltration and MCP-1 and MMP-9 expression; cilostazol supplementation prevented this phenomenon and reduced intimal hyperplasia. In contrast, the reverse zymography showed that cilostazol did not affect TIMP-1 expression in serum. In monocytic THP-1 cells, cilostazol and N6,O2'-dibutyryl-cAMP (dioctanoyl-cAMP, a cAMP analog) dose-dependently inhibited LPS-induced MCP-1 protein expression and MMP-9 activation, but did not affect the tissue inhibitor of metalloproteinase-1. Quantitative real-time polymerase chain reaction (PCR) showed that cilostazol inhibited MCP-1 and MMP-9 mRNA expression. Cilostazol significantly inhibited LPS-induced activation of p38, JNK, and nuclear factor-kappaB, and the respective inhibitors of p38 and JNK greatly reduced the level of LPS-induced MCP-1 and MMP-9, suggesting the involvement of the p38 and JNK pathways. In conclusion, cilostazol administered with LPS in vivo reduced neointimal hyperplasia and macrophage infiltration in the balloon-injured rabbit aorta; in vitro, cilostazol inhibits LPS-induced MCP-1 and MMP-9 expression. These data suggest that cilostazol may play an important role in preventing endotoxin- and injured-mediated vascular inflammation.
BackgroundUrotensin II (U-II), an 11-amino acid peptide, exerts a wide range of actions in cardiovascular systems. Interleukin-8 (IL-8) is secreted by endothelial cells, thereby enhancing endothelial cell survival, proliferation, and angiogenesis. However, the interrelationship between U-II and IL-8 as well as the detailed intracellular mechanism of U-II in vascular endothelial cells remain unclear. The aim of this study was to investigate the effect of U-II on IL-8 expression and to explore its intracellular mechanism in human umbilical vein endothelial cells.Methods/Principal FindingsPrimary human umbilical vein endothelial cells were used. Expression of IL-8 was determined by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and luciferase reporter assay. Western blot analyses and experiments with specific inhibitors were performed to reveal the downstream signaling pathways as concerned. U-II increased the mRNA/protein levels of IL-8 in human umbilical vein endothelial cells. The U-II effects were significantly inhibited by its receptor antagonist [Orn5]-URP. Western blot analyses and experiments with specific inhibitors indicated the involvement of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase in U-II-induced IL-8 expression. Luciferase reporter assay further revealed that U-II induces the transcriptional activity of IL-8. The site-directed mutagenesis indicated that the mutation of AP-1 and NF-kB binding sites reduced U-II-increased IL-8 promoter activities. Proliferation of human umbilical vein endothelial cells induced by U-II could be inhibited significantly by IL-8 RNA interference.Conclusion/SignificanceThe results show that U-II induces IL-8 expression in human umbilical vein endothelial cells via p38 mitogen-activated protein kinase and extracellular signal-regulated kinase signaling pathways and IL-8 is involved in the U-II-induced proliferation of human umbilical vein endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.