Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.
Primary Sjögren's syndrome is one of the most common autoimmune diseases. So far, genetic studies of Sjögren's syndrome have relied mostly on candidate gene approaches. To identify new genetic susceptibility loci for primary Sjögren's syndrome, we performed a three-stage genome-wide association study in Han Chinese. In the discovery stage, we analyzed 556,134 autosomal SNPs in 542 cases and 1,050 controls. We then validated promising associations in 2 replication stages comprising 1,303 cases and 2,727 controls. The combined analysis identified GTF2I at 7q11.23 (rs117026326: Pcombined = 1.31 × 10(-53), combined odds ratio (ORcombined) = 2.20) as a new susceptibility locus for primary Sjögren's syndrome. Our analysis also confirmed previously reported associations in Europeans in the regions of STAT4, TNFAIP3 and the major histocompatibility complex (MHC). Fine mapping of the region around GTF2I showed that rs117026326 in GTF2I had the most significant association, with associated SNPs extending from GTF2I to GTF2IRD1-GTF2I.
The Qinghai–Tibet Plateau (QTP) sensu lato (sl) houses an exceptional species diversity in Asia. To develop a comprehensive understanding of species diversity in this fascinating region, we reviewed recent progress from biogeographic, paleogeographic, paleontological and genomic research of both plants and animals in the QTPsl. Numerous studies have been conducted to examine whether the QTPsl uplift triggered the production of rich species diversity there, whether a Quaternary “unified ice sheet” eliminated plants and animals on the central plateau and how high‐altitude species developed the extreme environment adaptations. Major disputes arose about the first issue, mainly from different understanding of the QTP circumscriptions and related uplift, inaccurate dating of molecular phylogenetic trees, and non‐causal correlations between uplift and species diversification. The QTPsl uplift is spatially and temporally heterogeneous, and abundant fossils reported recently similarly support such an asynchronous upheaval model across the entire region. Available phylogeographic studies of alpine plants and animals suggested their glacial refugia in the central QTPsl, rejecting a unified ice sheet during the Last Glacial Maximum. Genomic evidence from a limited number of alpine species has identified numerous candidate genes for high‐altitude adaptation. In the future, more studies should be focused on speciation and adaptation mechanisms of the alpine species in the QTPsl based on the cutting‐edge methods.
Objective. To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans.Methods. A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations.Results. Three non-major histocompatibility complex (non-MHC) loci were identified at the genomewide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These
Invasive plants often have novel biotic interactions in their introduced ranges. Their defense to herbivory may differ from their native counterparts, potentially influencing the effectiveness of biological control. If invasive plants have decreased resistance but increased tolerance to enemies, insect herbivores may rapidly build up their populations but exert weak control. Moreover, resource availability to plants may affect the efficacy of biological control agents. We tested these predictions using Chinese tallow tree (Triadica sebifera) and two specialist herbivores (Heterapoderopsis bicallosicollis and Gadirtha inexacta) that are candidates for biological control. We performed a pair of field common garden experiments in China in which Triadica seedlings from the native or introduced range were grown in low or high light conditions and subjected to different levels of herbivory by each herbivore in a factorial design. We found that Heterapoderopsis achieved greater densities on tallow trees from the introduced range or when trees were grown in high light conditions. When Gadirtha was raised in the lab on tallow tree foliage we found that it performed better (larger pupal size) when fed foliage from introduced populations. However, introduced populations generally had greater herbivore tolerance such that the impact of each agent on plant performance was lower than on native populations despite higher herbivore loads. Tallow trees grew more slowly and achieved smaller sizes in lower light levels, but the impact of biological control agents was comparable to that found for higher light levels. Plants from introduced populations grew larger than those from native populations in all conditions. Our results suggest that reduced resistance and increased tolerance to herbivory in introduced populations may impede success of biological control programs. Biological control practitioners should include plants from the introduced range in the prerelease evaluation, which will help predict insect impact on target weeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.