Background. Breast cancer is a kind of cancer that starts in the epithelial tissue of the breast. Breast cancer has been on the rise in recent years, with a younger generation developing the disease. Magnetic resonance imaging (MRI) plays an important role in breast tumor detection and treatment planning in today’s clinical practice. As manual segmentation grows more time-consuming and the observed topic becomes more diversified, automated segmentation becomes more appealing. Methodology. For MRI breast tumor segmentation, we propose a CNN-SVM network. The labels from the trained convolutional neural network are output using a support vector machine in this technique. During the testing phase, the convolutional neural network’s labeled output, as well as the test grayscale picture, is passed to the SVM classifier for accurate segmentation. Results. We tested on the collected breast tumor dataset and found that our proposed combined CNN-SVM network achieved 0.93, 0.95, and 0.92 on DSC coefficient, PPV, and sensitivity index, respectively. We also compare with the segmentation frameworks of other papers, and the comparison results prove that our CNN-SVM network performs better and can accurately segment breast tumors. Conclusion. Our proposed CNN-SVM combined network achieves good segmentation results on the breast tumor dataset. The method can adapt to the differences in breast tumors and segment breast tumors accurately and efficiently. It is of great significance for identifying triple-negative breast cancer in the future.
Background and Objective. Breast cancer is a common malignant tumor that seriously threatens the health of women in my country and even around the world. The proliferation marker Ki-67 has been utilized to distinguish luminal B from luminal A tumors and is a reliable indicator of more aggressive breast cancer growth. If a reliable prediction method for breast cancer patients to avoid invasive damage can be found to predict Ki-67 before pathological examination, it will be very beneficial for doctors to formulate later treatment plans and provide more useful treatment options. Methodology. This paper proposes a tumor segmentation and prediction framework based on the combination of improved attention U-Net and SVM. The framework first improves on attention U-Net by introducing coefficients for learning multidimensional attention. Make the attention mechanism more aware of the main situation in the segmentation process. At the same time, the segmented breast MRI results and corresponding labels were input into the SVM classifier to accurately predict the expression of Ki-67. Results. The DSC, PPV, and sensitivity of our combined model are 0.94, 0.93, and 0.94, respectively, with better segmentation performance. And we compare with the segmentation frameworks of other papers and find that our combined model can make accurate segmentation of breast tumors. Conclusion. Our method can adapt to the variability of breast tumors and segment breast tumors accurately and efficiently. In the future, it can be widely used in clinical practice, so as to help the clinic better formulate a reasonable diagnosis and treatment plan for breast cancer patients.
Objective. To explore the feasibility of automatically detecting the degree of meniscus injury by radiomics fusion of dual-mode magnetic resonance imaging (MRI) features of sagittal and coronal planes of the knee joint. Methods. This retrospective study included 164 arthroscopically confirmed meniscus injuries in 152 patients admitted to the Department of Orthopaedics of our hospital from July 2018 to March 2021. A total of 1316-dimensional radiomics signatures were extracted from single-mode sagittal and coronal plane images of menisci, respectively. Then, the sagittal and coronal plane features were fused to form a dual-mode joint feature group with a total of 2632-dimensional radiomics signatures. The minimum redundancy maximum relevance (mRMR) algorithm and the least absolute shrinkage and selection operator (LASSO) regression were used to select features and generate optimal radiomics signatures. The single-mode sagittal plane feature model (Model 1), single-mode coronal plane feature model (Model 2), and the combined sagittal and coronal plane feature model (Model 3) performance were tested by receiver operating characteristic (ROC) curves and Delong test. The calibration curve test was used to verify the reliability of radiomics signatures of the three models. Results. The average intra- and interobserver intraclass correlation coefficients (ICCs) of the most significant 8-dimensional radiomics signatures of Model 1 and Model 2 were 0.935 (range 0.832-0.998) and 0.928 (range 0.845-0.998), respectively. All the three models had good detection performance; Model 3 had the most significant performance (the areas under the curve (AUCs) of training, and validation sets were 0.947 and 0.923, respectively), which was superior to Model 1 (AUCs of training set and validation set were 0.889 and 0.876, respectively) and Model 2 (AUCs of training set and validation set were 0.831 and 0.851, respectively). The detection probability of training and validation sets in the three models was highly consistent with the actual clinical probability. Conclusions. It is feasible to establish a model for automatic detection of meniscus damage by means of radiomics. The detection performance of the dual-mode knee MRI model is better than that of any single-mode model, showing potent feature analysis ability and outstanding detection performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.