This paper presents some techniques to improve the linearity of traditional resistive feedback PGAs. By utilizing the switched op-amp in the PGA, the MOS switches in the feedback resistor array can be eliminated and thus the PGA’s linearity can be improved. The PGA’s linearity is further improved with an additional capacitor, which is used for pre-charging the sampling capacitor to strengthen its capability to drive the sampling capacitor without any extra power consumption. The pre-charge technique is especially suitable for the case where the PGA drives a large sampling capacitance. Implemented in SMIC 0.18 um CMOS technology, the proposed PGA can achieve a gain of 0.5 or 1 and consumes 4.68 mW at a single 5 V supply with the switched output stage enabled. When driving a 20 pF sampling capacitor at a sampling frequency of 200 kHz, the simulation results show that the proposed PGA can give a 9 dBc improvement in SFDR of the sampled signal compared to the traditional PGA design and the SFDR can reach up to 114 dBc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.