oxidation, [3] the oxygen reduction reaction, [4] hydrogen oxidation reaction, [5] and hydrogen evolution reaction (HER). [6] The scarcity and high cost of Pt have necessitated the development of catalytic systems with increased activity, utilization, and durability of Pt atoms. In this respect, the increase of Pt dispersion on supports by downsizing metals to the atomic scale is of significance for maximizing the Pt utilization and consequently increasing the mass activity and turnover frequency (TOF). [7,8] However, in most cases, the electronic properties of the supported Pt atoms are highly dependent on coordination/supporting environments, which have been shown to be crucial for enabling the Pt catalysts with high intrinsic activity. [9] In recent years, abundant efforts have been made to synthesize the atomic Pt catalysts with tailored coordination environments on diverse supports, such as the N/S-doped carbon materials (Pt 1 /NC, [10] PtRuC [11] ), metal oxides (PtCoO, [12] PtFe 2 O 3 [13] ), metal sulfides (PtMoS 2 [14] ), etc. Anchoring Pt atoms by neighboring strong electronegative atoms will lead to a large charge transfer from Pt to coordinated O/N/S atoms,
Platinum-based catalysts occupy a pivotal position in diverse catalytic applications in hydrogen chemistry and electrochemistry, for instance, the hydrogen evolution reactions (HER). While adsorbed Pt atoms on supports often cause severe mismatching on electronic structures and HER behaviors from metallic Pt due to the different energy level distribution of electron orbitals.Here, the design of crystalline lattice-confined atomic Pt in metal carbides using the Pt-centered polyoxometalate frameworks with strong PtO-metal covalent bonds is reported. Remarkably, the lattice-confined atomic Pt in the tungsten carbides (Pt doped @WC x , both Pt and W have atomic radii of 1.3 Å) exhibit near-zero valence states and similar electronic structures as metallic Pt, thus delivering matched energy level distributions of the Pt 5d z 2 and H 1s orbitals and similar acidic hydrogen evolution behaviors. In alkaline conditions, the Pt doped @WC x exhibits 40 times greater mass activity (49.5 A mg Pt −1 at η = 150 mV) than the Pt@C because of the favorable water dissociation and H* transport. These findings offer a universal pathway to construct urgently needed atomic-scale catalysts for broad catalytic reactions.