Purpose To evaluate the operation and early clinical effect in primary total knee arthroplasty (TKA) about the novel combination of CT-based patient-specific three-dimensional (3D) preoperative design and conventional osteotomy instruments, compared with the conventional method. Methods After a 1:1 propensity score-matching (PSM), patients were matched to the novel technique group and the conventional group, 109 cases in each group. The conventional group adopted a preoperative design based on a full-length radiograph (FLX) and received TKA with conventional osteotomy instruments. The novel technique group used a CT-based patient-specific 3D preoperative design combined with conventional osteotomy instruments; during the surgery, the femoral entry point, femoral valgus osteotomy angle, the fix point of tibial plateau extramedullary guide pin, and the position of tibial extramedullary positioning rod were accurately selected according to the preoperative 3D design to ensure accurate intraoperative implementation. The lower limb alignment, component position, operation time, tourniquet time, hospital stay, blood loss volume, incidence of postoperative complications, visual analog scale (Vas) score, and New Knee Society Score System (NEW-KSS) at 1 day before operation and 1, 6, and 12 months after operation were recorded and compared. Results The novel technique group was significantly better than the conventional group in controlling lateral tibial component angle (LTC) (P < 0.001), and the novel technique group had lower percentages of hip-knee-ankle angle (HKA) outliers (P < 0.001) and overcorrection (P = 0.003). The operation time, tourniquet time, and hospital stay of the novel technique group was shorter (P < 0.05). In 1 month after the operation, the novel technique group achieved a significantly better VAS score (P < 0.05), but a similar NEW-KSS score (P > 0.05) when compared with the conventional group. But in 6 and 12 months after surgery, no statistical differences were seen in the above two scores (P > 0.05). Conclusion The novel technique of CT-based patient-specific 3D preoperative design combined with conventional instruments can improve the accuracy of osteotomy in primary total knee arthroplasty, with benefits of significantly reducing pain and rapid recovery during the early postoperative period, but having no obvious effect on outcome after a 1-year follow-up.
Rationale:Neuroblastoma is one of the most common tumors found in children, and mostly arises in the adrenal gland and paravertebral regions. Orbital neuroblastoma metastasis is relatively rare, and is associated with poor prognosis. Since the symptoms and signs of orbital neuroblastoma are not specific, its diagnosis remains challenging.Patient concerns:A 3-year-old girl presented with periorbital ecchymoses (raccoon eyes) and proptosis for 40 days.Diagnoses:Abdominal magnetic resonance imaging (MRI) and sonography analysis revealed a large mass in the left adrenal gland (primary tumor). The computed tomography and MRI further revealed multiple soft tissue masses in the skull and both orbits with erosion of the adjacent bones (the metastasis). The histological analysis of the tumor removed from the right orbit confirmed the diagnosis of neuroblastoma.Interventions:The mass on the right face was surgically removed.Outcomes:The patient exhibited no deteriorative signs at the 6-month follow-up.Lessons:Clinical manifestations, such as periorbital ecchymoses and proptosis, in combination with radiological analysis and histological findings, are important for the diagnosis of orbital neuroblastoma metastasis.
Although customized three-dimensional tantalum implants have been used to treat a large variety of diseases, few reports have described the application of such implants to reconstruct large pelvic bone defects after the removal of massive tumors. We herein describe a 30-year-old woman with a 9-year history of a massive low-grade chondrosarcoma in the pelvic bone. After removal of a solid 12- × 8- × 6-cm tumor with clear margins, we used a customized three-dimensional printed tantalum implant to fill the large pelvic bone defect and performed hip arthroplasty in a one-step surgery. The patient’s postoperative recovery was uneventful. She started walking 1 month after surgery, and she developed no tumor recurrence, instrumentation failure, or implant loosening during the 12-month follow-up period. This report describes the successful application of a customized three-dimensional printed implant to reconstruct a massive pelvic bone defect. Satisfactory functional recovery was achieved with no apparent complications. The methodology of the current case may benefit orthopedic and oncologic surgeons in designing treatment strategies for similar cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.