Autologous chondrocyte implantation (ACI) has been recently used to treat cartilage defects. Partly because of the success of mosaicplasty, a procedure that involves the implantation of native osteochondral plugs, it is of potential significance to consider the application of ACI in the form of biphasic osteochondral composites. To test the clinical applicability of such composite construct, we repaired osteochondral defect with ACI at low cell-seeding density on a biphasic scaffold, and combined graft harvest and implantation in a single surgery. We fabricated a biphasic cylindrical porous plug of DL-poly-lactide-co-glycolide, with its lower body impregnated with b-tricalcium phosphate as the osseous phase. Osteochondral defects were surgically created at the weight-bearing surface of femoral condyles of Lee-Sung mini-pigs. Autologous chondrocytes isolated from the cartilage were seeded into the upper, chondral phase of the plug, which was inserted by press-fitting to fill the defect. Defects treated with cell-free plugs served as control. Outcome of repair was examined 6 months after surgery. In the osseous phase, the biomaterial retained in the center and cancellous bone formed in the periphery, integrating well with native subchondral bone with extensive remodeling, as depicted on X-ray roentgenography by higher radiolucency. In the chondral phase, collagen type II immunohistochemistry and Safranin O histological staining showed hyaline cartilage regeneration in the experimental group, whereas only fibrous tissue formed in the control group. On the International Cartilage Repair Society Scale, the experimental group had higher mean scores in surface, matrix, cell distribution, and cell viability than control, but was comparable with the control group in subchondral bone and mineralization. Tensile stress-relaxation behavior determined by uni-axial indentation test revealed similar creep property between the surface of the experimental specimen and native cartilage, but not the control specimen. Implanted autologous chondrocytes could survive and could yield hyaline-like cartilage in vivo in the biphasic biomaterial construct. Pre-seeding of osteogenic cells did not appear to be necessary to regenerate subchondral bone. ß
Accurate prediction of absolute protein−ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor− ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC 50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons do not undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing "nerve guidance channels" or "nerve conduits." When developing ideal tissue-engineered nerve conduits, several components come to mind. They include a biodegradable and porous channel wall, the ability to deliver bioactive growth factors, incorporation of support cells, an internal oriented matrix to support cell migration, intraluminal channels to mimic the structure of nerve fascicles, and electrical activities. This article reviews the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. To more accurately mimic natural repair in the body, recent studies have focused on the use of various advanced approaches to create ideal nerve conduits that combine multiple stimuli in an effort to better mimic the complex signals normally found in the body.
The new coronavirus COVID-19, also known as SARS-CoV-2, has infected more than 300,000 patients and become a global health emergency due to the very high risk of spread and impact of COVID-19. There are no specific drugs or vaccines against COVID-19, thus effective antiviral agents are still urgently needed to combat this virus. Herein, the FEP (free energy perturbation)-based screening strategy is newly derived as a rapid protocol to accurately reposition potential agents against COVID-19 by targeting viral proteinase Mpro. Restrain energy distribution (RED) function was derived to optimize the alchemical pathway of FEP, which greatly accelerated the calculations and first made FEP possible in the virtual screening of the FDA-approved drugs database. As a result, fifteen out of twenty-five drugs validated in vitro exhibited considerable inhibitory potencies towards Mpro. Among them, the most potent Mpro inhibitor dipyridamole potentially inhibited NF-B signaling pathway and inflammatory responses, and has just finished the first round clinical trials. Our result demonstrated that the FEP-based screening showed remarkable advantages in prompting drug repositioning against COVID-19.
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.