Single-crystalline hexagonal alpha-Fe(2)O(3) nanorods/nanobelts have been created by a simple iron-water reaction in the low-temperature range of 350-450 degrees C. Scanning electron microscopy examination shows that the needle-like products, radiating from and perpendicular to the original large iron particle surfaces, are up to a few micrometers in length with an average diameter from 20 nm (tip) to 100 nm (base). X-ray photoelectron spectroscopy and FTIR spectroscopy reveal that the outermost surface of the nanorods consists of Fe(2)O(3) without organic impurity contaminants, which could possibly result from other methods, such as hydrothermal growth. Nanobelt-like structures are believed to result from a combination of increased reaction temperature and time. The initial formation and subsequent growth of alpha-Fe(2)O(3) nanorods may be explained by the iron metal corrosion mechanism.
Soft and conformable electronics are emerging rapidly and is envisioned as the future of next-generation electronic devices where devices can be readily deployed in various environments, such as on-body, on-skin or as a biomedical implant. Modern day electronics require electrical conductors as the fundamental building block for stretchable electronic devices and systems. In this review, we will study the various strategies and methods of designing and fabricating materials which are conductive, stretchable and self-healable, and explore relevant applications such as flexible and stretchable sensors, electrodes and energy harvesters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.