The strategic transition from fossil energy to renewable energy is an irreversible global trend, but the pace of renewable energy deployment and the path of cost reduction are uncertain. In this paper, a two-factor learning-curve model of wind power and photovoltaics (PV) was established based on the latest empirical data from the United States, and the paths of cost reduction and corresponding social impacts were explored through scenario analysis. The results demonstrate that both of the technologies are undergoing a period of rapid development, with the learning-by-searching ratio (LSR) being greatly improved in comparison with the previous literature. Research, development, and demonstration (RD&D) have contributed to investment cost reduction in the past decade, and the cost difference between high and low RD&D spending scenarios is predicted to be 5.5%, 8.9%, and 11.27% for wind power, utility-scale PV, and residential PV, respectively, in 2030. Although higher RD&D requires more capital, it can effectively promote cost reduction, reduce the total social cost of deploying renewable energy, and reduce the abatement carbon price that is needed to promote deployment. RD&D and the institutional support behind it are of great importance in allowing renewables to penetrate the commercial market and contribute to long-term social welfare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.