The experimental investigation discussed here gives experimental confirmation of the slip-flow theory for modeling hydrodynamic gas bearings with clearances below 0.25 microns. An interferometric technique employing two CW lasers is used to measure the small clearances with an accuracy of 0.025 microns. The effects of molecular rarefaction are studied by operating the slider bearing in different gas media of different mean free paths. Bearings operating at extremely high local Knudsen numbers are studied without approaching excessively high bearing numbers. Experimentally measured trailing edge clearances and pitch angles are compared with theoretical predictions using the modified Reynolds equation with velocity slip boundary conditions. Excellent agreement between experiment and theory is found for clearances as high as 1.60 microns to as low as 0.075 microns with corresponding ambient Knudsen numbers of 0.04 and 2.51, respectively.
This paper reviews the state of the head-disk interface (HDI) technology, and more particularly the head-medium spacing (HMS), for today's and future hard-disk drives. Current storage areal density on a disk surface is fast approaching the one terabit per square inch mark, although the compound annual growth rate has reduced considerably from ∼100%/annum in the late 1990s to 20-30% today. This rate is now lower than the historical, Moore's law equivalent of ∼40%/annum. A necessary enabler to a high areal density is the HMS, or the distance from the bottom of the read sensor on the flying head to the top of the magnetic medium on the rotating disk. This paper describes the various components of the HMS and various scenarios and challenges on how to achieve a goal of 4.0-4.5 nm for the 4 Tbit/in 2 density point. Special considerations will also be given to the implication of disruptive technologies such as sealing the drive in an inert atmosphere and novel recording schemes such as bit patterned media and heat assisted magnetic recording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.