The Floberg–Jakobsson–Olsson cavitation theory is implemented using a mass-conservative algorithm to accurately predict the behavior of cavitation in flat surfaces enhanced with dimples. The multigrid method is used to accelerate the convergence speed. Comparison is made on different cavitation theories. The results reveal that the load-carrying capacity of dimple-enhanced surfaces is limited under the simulated conditions.
Greater feed efficiency (FE) is critical in increasing profitability while reducing the environmental impact of pig production. Previous studies that identified swine FEassociated bacterial taxa were limited in either sampling sites or sequencing methods. This study characterized the microbiomes within the intestine of FE contrasting Duroc × (Landrace × Yorkshire) (DLY) pigs with a comprehensive representation of diverse sampling sites (ileum, cecum, and colon) and a metagenomic sequencing approach. A total of 226 pigs were ranked according to their FE between weaning to 140 day old, and six with extreme phenotypes were selected, three for each of the high and low groups. The results revealed that the cecum and colon had similar microbial taxonomic composition and function, and had higher capacity in polysaccharide metabolism than the ileum. We found in cecum that the high FE pigs had slightly higher richness and evenness in their micriobiota than the low FE pigs. We identified 12 phyla, 17 genera, and 39 species (e.g., Treponema porcinum, Treponema bryantii, and Firmicutes bacterium CAG:110) that were potentially associated with swine FE variation in cecum microbiota through LEfSe analysis. Species enriched in the cecum of the high FE pigs had a greater ability to utilize dietary polysaccharides and dietary protein according to the KEGG annotation. Analysis of antibiotic resistance based on the CARD database annotation indicated that the macB resistant gene might play an important role in shaping the microbial community in the cecum of pigs with contrasting FE. The bacteria from the genus Prevotella was highly enriched in the cecum of low FE pigs, which may impair the establishment of a more effective nutrient harvesting microbiota because of the interaction between Prevotella and other benefical microbes. These findings improved our understanding of the microbial compositions in the different gut locations of DLY pigs and identified many biomarkers associated with FE variation wich may be used to develop strategies to improve FE in pigs.
A mass-conservative algorithm that implements the Jakobsson–Floberg–Olsson cavitation theory is used to predict the performances of seal-like structures and thrust bearings with a dimpled surface texture. The results of a series of simulations for load-carrying capacity, film thickness, dimple depth, dimple density, cavitation pressure, leakage, and friction force are presented, and the relationship between these performance parameters is studied. It is shown that, under the conditions simulated, surface roughness can improve the load-carrying capacity, but its effect is limited.
N-{4-[(2-Amino-6-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)sulfanyl]benzoyl}-L-glutamic acid (4) and nine nonclassical analogues 5–13 were synthesized as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. The key intermediate in the synthesis was 2-amino-6-methylthieno[2,3-d]pyrimidin-4(3H)-one (16), which was converted to the 5-bromo-substituted compound 17 followed by an Ullmann reaction to afford 5–13. The classical analogue 4 was synthesized by coupling the benzoic acid derivative 19 with diethyl l-glutamate and saponification. Compound 4 is the most potent dual inhibitor of human TS (IC50 = 40 nM) and human DHFR (IC50 = 20 nM) known to date. The nonclassical analogues 5–13 were moderately potent against human TS with IC50 values ranging from 0.11 to 4.6 µM. The 4-nitrophenyl analogue 7 was the most potent compound in the nonclassical series, demonstrating potent dual inhibitory activities against human TS and DHFR. This study indicated that the 5-substituted 2-amino-4-oxo-6-methylthieno[2,3-d]pyrimidine scaffold is highly conducive to dual human TS-DHFR inhibitory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.