Summary of main observation and conclusion
In this work, a new simple and readily synthesized turn‐on probe 2‐(4‐anthracene‐9‐yl‐phenyl)‐ 2H‐[1,2,3]triazole‐4‐carbaldehyde (APTC) was legitimately designed towards homocysteine (Hcy). Moreover, APTC has excellent optical properties such as intramolecular charge transfer (ICT) and aggregation induced emission enhancement (AIEE) characteristics, indicating its extensive application potentiality. What's more, APTC displayed rapid, high selectivity and specificity towards homocysteine over cysteine/glutathione. The detection limit of APTC for Hcy was as low as 2.198×10–8 mol·L–1, and the response time was only 5 min. APTC has been successfully applied to detect Hcy in silica gel plates and living cells, which indicates that APTC has good stability and biocompatibility as a selective probe for Hcy. Finally, the mechanism was studied using 1H NMR titration experiments and mass spectrometry.
A new fluorescence probe 2-(4′-(diphenylamino)-[1,1-biphenyl]-4-yl)-2H-[1,2,3]-triazole-4-carbaldehyde (DBTC) was designed and synthesized through Suzuki coupling reaction between (4-(diphenylamino)phenyl)boronic acid and (4-bromophenyl)-2H-[1,2,3]-triazole-4-carbaldehyde. This probe DBTC had intramolecular charge transfer and aggregation-induced emission enhancement performances and showed high selectivity and sensitivity toward homocysteine (Hcy) in the presence of other amino acids. The detection limit of probe DBTC for Hcy was 3.05 × 10 −6 M, and the mechanism was researched by 1 H NMR titration experiments and mass spectrometry. Furthermore, cell-culture results indicated that probe DBTC was cell permeable and could be used to detect Hcy in living cells. The good characteristics of the probe DBTC had huge application potential use for researching the effects of Hcy in other biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.