Purpose To investigate the potential of plasma microRNA-150-5p (miR-150-5p) as a biomarker for chronic obstructive pulmonary disease (COPD) and its relationship with clinical indicators such as pulmonary function. Patients and Methods Fifty-nine patients with COPD and twenty-six healthy control individuals were recruited in the Second People’s Hospital of Hefei from September 2021 to September 2022. The plasma expression level of miR-150-5p was measured by quantitative real-time polymerase chain reaction. Results The miR-150-5p level in the COPD group was significantly lower than that in the control group, and the relative expression was lower in patients with severe airflow limitation than those with mild limitation. Plasma miR-150-5p levels were positively correlated with pulmonary function indicators and negatively correlated with the white blood cell count and C-reactive protein level. The receiver operating characteristic curve suggested that plasma miR-150-5p had predictive value for COPD (area under curve = 0.819, sensitivity 64.4%, specificity 92.3%). Conclusion MiR-150-5p can be useful for the diagnosis and disease assessment of COPD, and has value as a biomarker for COPD.
Background The differential expression of circular RNAs (circRNAs) in individuals with very severe chronic obstructive pulmonary disease (COPD) and healthy individuals was screened using microarray technology. The related functions and mechanisms were analyzed using bioinformatic methods to explore the potential of target circRNAs as biomarkers of COPD and provide insights for future pathogenesis. Patients and methods Thirty patients with very severe COPD and thirty healthy controls were diagnosed at The Second People’s Hospital of Hefei from September 2021 to September 2022. The differential expression of circRNAs was compared and analyzed using a gene microarray and verified using quantitative real-time polymerase chain reaction (qRT-PCR) technology. Results A total of 90 upregulated and 29 downregulated circRNAs were screened in patients with very severe COPD and compared with those in healthy controls. qRT-PCR analysis showed that hsa_circ_0062683 of patients with very severe COPD was significantly upregulated, and hsa_circ_0089763 and hsa_circ_0008882 were significantly downregulated. By constructing the circRNA-miRNA interaction network, it was found that hsa-miR-612, hsa-miR-593-5p, hsa-miR-765, and hsa-miR-103a-2-5p are the miRNAs regulated by more differentially expressed circRNAs (DEcircRNAs). DEcircRNAs may participate in the development of COPD through hypoxia or regulation of various immune cells. Conclusion Plasma circRNAs may play a helpful role in the diagnosis and assessment of COPD and be valuable disease biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.