In reinforced concrete (RC) frame-shear wall structure, the coupling beam needs to yield before the wall limbs are damaged, in order to dissipate the energy of the external load. However, the coupling beam has a limited energy dissipation capacity. Once severely damaged, the coupling beam is difficult to be repaired, which hinders the structural recovery after an earthquake. Considering excellence of metal rubber (MR) in hysteresis energy dissipation and deformation self-reset, this paper changes the energy dissipation mode of the coupling beam by adding an MR damper to the beam. Firstly, the stress-strain curve of MR was obtained through mechanical experiments, and used to construct the constitutive model of the material. Then, the parameters of the damper were designed based on the constitutive model. Next, the MR dampers were installed on the coupling beams of a 12-layer RC frame-shear wall structure. The authors analyzed the time histories of the elastoplastic dynamics of the structure under seismic actions, and calculated the seismic responses like interlayer displacement, absolute acceleration, and base shear force. These parameters were compared with those of the structure without the damper, and the output-deformation envelope curve of the damper on each layer were obtained. In this way, the authors studied how the parameters of the MR damper affect the seismic response of RC frame-shear wall structure. The results show that adding the MR damper to coupling beam can effectively weaken the seismic response of the RC frame-shear wall structure.
To figure out the performance of dampers made of metal rubber (MR) that are installed in bridge and frame shear wall structures to change the energy consumption mode of artifacts, experiments were performed on the MR material processed by improved processing techniques to test its compression and shear hysteresis properties in high-temperature environment, and discover the laws of the impact of factors such as the improved processing techniques and temperature on the compression and shear hysteresis of the material. At the same time, based on test curves and the strain hardening laws of the material, this paper employed the least square method to perform piecewise linear fitting on MR curves, and the corresponding strain hardening constitutive model was established and verified. The study suggests that, after processed by the improved processing techniques, the compression and shear hysteresis energy consumption performance of the MR test pieces is very stable, and the shear strength had been improved. As the temperature increases, the metal rubber consumes more vibrational energy, and the stiffness of MR vibration isolator increases as well; at a same temperature, as the strain amplitude and relative density increase, the vibrational energy consumed by the MR damping material increases accordingly. The simplified constitutive model constructed in the paper has a simple form, it can not only describe the strain hardening features of the material, but also conform to the test curves, therefore, it can facilitate the parameter design and the calculation of MR dampers. The research conclusions obtained in this paper can provide theoretical and experimental evidence for the processing, preparation, and application of MR dampers, and it is of very important theoretical significance and practical value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.