Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robotics and Computer-Integrated Manufacturing, Elsevier, 2015, 35, pp.151-168 The paper deals with geometric calibration of industrial robots and focuses on reduction of the mea-surement noise impact by means of proper selection of the manipulator configurations in calibration experiments. Particular attention is paid to the enhancement of measurement and optimization techniques employed in geometric parameter identification. The developed method implements a complete and irreducible geometric model for serial manipulator, which takes into account different sources of errors (link lengths, joint offsets, etc). In contrast to other works, a new industry-oriented performance measure is proposed for optimal measurement configuration selection that improves the existing techniques via using the direct measurement data only. This new approach is aimed at finding the ca-libration configurations that ensure the best robot positioning accuracy after geometric error compen-sation. Experimental study of heavy industrial robot KUKA KR-270 illustrates the benefits of the devel-oped pose strategy technique and the corresponding accuracy improvement.
The paper focuses on the calibration of elastostatic parameters of spatial anthropomorphic robots. It proposes a new strategy for optimal selection of the measurement configurations that essentially increases the efficiency of robot calibration. This strategy is based on the concept of the robot test-pose and ensures the best compliance error compensation for the test configuration. The advantages of the proposed approach and its suitability for practical applications are illustrated by numerical examples, which deal with calibration of elastostatic parameters of a 3 degrees of freedom anthropomorphic manipulator with rigid links and compliant actuated joints.
Abstract-The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elastostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to the proposed performance measure related to the end-effector position accuracy. Experimental results are presented that illustrate the advantages of the developed technique.
-The paper presents a novel technique for the design of optimal calibration experiments for a planar anthropomorphic manipulator with n degrees of freedom. Proposed approach for selection of manipulator configurations allows essentially improving calibration accuracy and reducing parameter identification errors. The results are illustrated by application examples that deal with typical anthropomorphic manipulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.