The composition of Bayan Obo iron ore concentrate is complex. If a large proportion is used to prepare pellets, abnormal swelling will occur during blast furnace smelting. This paper studies the swelling behavior of pellets prepared from Bayan Obo iron ore concentrate in stages during the reduction process; XRD and SEM-EDS analysis and calculates the crystal parameters of the reduction products in each stage. The results show that the total RSI of pellets prepared from Bayan Obo iron ore concentrate is as high as 35%, and the third stage of reduction has the maximum swelling rate, which is 24%. The mechanisms of the three stages reduction swelling of pellets are the crystal transformation, the effect of slag phase and the growth of iron whiskers. The results can enrich the reduction swelling theory of pellets prepared from complex intergrowth minerals.
The actual combustion rate of pulverized coal in the blast furnace tuyere is hard to be measured. In this research, the combustion rate of pulverized coal injected into oxygen blast furnace was obtained by a new equipment. This equipment can simulate the actual blast furnace well, and the relationship between pulverized coal injection (PCI) ratio and AO/C was established by mathematical deduction. The experimental results show that the best combustibility of the four pulverized coals is C, and when the coal injection ratio is 350 kg/tHM, the combustion rate can be reached 79%, while the combustion rate of B in the same case is only 45.6%. With the increase of AO/C, the relative amount of oxygen to coal increases, the combustion conditions become better, and combustion rate of the pulverized coal increases. In addition, under the condition of high temperature and rapid combustion, with the increase of coal’s volatile, the combustion rate increases and the corresponding PCI ratio is also increased. By using the new equipment, the unburned coal under the oxygen blast furnace conditions can be collected for further study.
The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve’s melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.