Context: Natural killer (NK) cells can eliminate malignant cells and play a vital role in immunosurveillance. Administration of natural compounds represents a promising approach for antitumor immunotherapy, which may enhance the NK cell activity via multiple mechanisms. Objective: Establishing approaches to evaluate the effect of select natural products on NK cell-mediated cytotoxicity. Materials and methods: We selected a natural product library containing 2880 pure compounds, which was provided by the National Centre for Drug Screening of China. 0.1% DMSO was employed as a negative control, and 100 U/mL human recombinant IL-2 was employed as a positive control. To evaluate the % of tumour cells which were killed by NK cells, expanded NK cells were co-cultured with tumour cells and then treated with natural products at the concentration of 10 lM. After 24-h co-incubation, luminescent signal was detected and percent lysis was calculated. Results: We report on the results of a three-round high-throughput screening effort that identified 20deoxyingenol 3-angelate (DI3A) and its analogue ingenol 3-angelate (I3A) as immuno enhancers which boosts NK cell-mediated killing of non-small cell lung cancer cells (NSCLCs). Biophotonic cytotoxicity assay and calcein release assay were used as two well-established NK cell cytotoxicity detection assays to validate the immuno-enhancing effects of DI3A and I3A, which was achieved by increasing degranulation and interferon-gamma secretion of NK cells. Conclusions: Our newly established ATP-based method was a valuable and information-rich screening tool to investigate the biological effects of natural products on both NK cells and tumour cells.
Non-small-cell lung cancer (NSCLC) remains the most common malignancy with the highest morbidity and mortality worldwide. In our previous study, we found that a classic traditional Chinese medicine (TCM) formula Ze-Qi-Tang (ZQT), which has been used in the treatment of respiratory diseases for thousands of years, could directly inhibit the growth of human NSCLC cells via the p53 signaling pathway. In this study, we explored the immunomodulatory functions of ZQT. We found that ZQT significantly prolonged the survival of orthotopic lung cancer model mice by modulating the tumor microenvironment (TME). ZQT remarkably reduced the number of MDSCs (especially G-MDSCs) and inhibited their immunosuppressive activity by inducing apoptosis in these cells via the STAT3/S100A9/Bcl-2/caspase-3 signaling pathway. When G-MDSCs were depleted, the survival promotion effect of ZQT and its inhibitory effect on lung luminescence signal disappeared in tumor-bearing mice. This is the first study to illustrate the immunomodulatory effect of ZQT in NSCLC and the underlying molecular mechanism.
The current performance of nature compounds in antitumor field is gradually attracted more and more attention, we discovered a nature active ingredient alizarin possess potent natural reductive NF-κB activity to against pancreatic cancer. However, the preclinical pharmacology and therapeutic effect, and the underlying mechanisms of alizarin in inhibiting pancreatic cancer are still unclear. After high-throughput screening, this is the first report that alizarin can induce a potent inhibitory effect against pancreatic cancer cells. Alizarin induced cell cycle arrest and promoted cell apoptosis by inhibiting TNF-α-stimulated NF-κB activity and nuclear translocation, and inactivated its related TNF-α-TAK1-NF-κB signaling cascade followed by downregulation of NF-κB target genes involved in cell apoptosis (Bcl-2, Bcl-xL, XIAP) and in the cell cycle and growth (cyclin D, c-myc). Due to the abrogation of NF-κB activity, combination of alizarin and gemcitabine exerted a better inhibitory effect on pancreatic cancer. In summary, natural component alizarin, inhibited cell proliferation and induced apoptosis
in vitro
and
in vivo
through targeting of the NF-κB signaling cascade with minimal toxicity, which combine with gemcitabine, can significantly enhance the antitumor capability, playing a synergistic effect. Therefore, alizarin may play a role in reversing gemcitabine resistance caused by overactivated NF-κB in clinical application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.