Polysaccharides are abundant in nature, renewable, nontoxic, and intrinsically biodegradable. They possess a high level of functional groups including hydroxyl, amino, and carboxylic acid groups. These functional groups can be utilized for further modification of polysaccharides with small molecules, polymers, and crosslinkers; the modified polysaccharides have been used as effective building blocks in fabricating novel biomaterials for various biomedical applications such as drug delivery carriers, cell-encapsulating biomaterials, and tissue engineering scaffolds. This review describes recent strategies to modify polysaccharides for the development of polysaccharide-based biomaterials; typically self-assembled micelles, crosslinked microgels/nanogels, three-dimensional hydrogels, and fibrous meshes. In addition, the outlook is briefly discussed on the important aspects for the current and future development of polysaccharide-based biomaterials, particularly tumor-targeting intracellular drug delivery nanocarriers.
Biopolymer-based nanogels (bionanogels) are a promising platform as polymer-based drug delivery systems encapsulting hydrophilic anticancer therapeutics; however, enhanced/controlled drug release is highly desired. Herein, we report new dual stimuli-responsive bionanogels (ssBNGs) as potential intracellular delivery nanocarriers with multi-controlled and enhanced drug release. A facile aqueous crosslinking polymerization of oligo(ethylene oxide)-containing methacrylate (OEOMA) in the presence of carboxymethyl cellulose (CMC) and a disulfide-labeled dimethacrylate allows for the synthesis of ssBNGs crosslinked with disulfide linkages of POEOMA-grafted CMC. These ssBNGs exhibit dual response release of encapsulated anticancer drugs: reductive cleavage of disulfide crosslinks and acidic pH-response of carboxylic acid groups in CMC. Their applicability toward tumor-targeting drug delivery applications is demonstrated with confocal laser scanning microscopy for cellular uptake and cell viability, as well as a facile bioconjugation with a water-soluble UV-active dye as a model cell-targeting biomolecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.