We make a machine that can perform as an invisible hand able to write and draw smoothly accompanied with the incidental music. And this machine can be used in the commercial advertising display, artmobile poster writing, the accessory equipment of the multimedium classrooms, stage effect, new art pattern especially in dark. We present a new display application of the long lag phosphor (LLP) material in this paper. A prototype is fabricated which can be written, drawn and displayed by controlling a laser beam on the screen which is made from the LLP material. For selecting the match laser beam wavelength for different LLP material screens, the energy band structure of the LLP material Mn(H2PO4)2 of 3-4 eV band gap is calculated by VASP (Vienna abinitio simulation package) software and its Raman shift peaks of Mn(H2PO4)2 are tested at 625 nm, 769 nm, 1049 nm and in far infrared wavelength range. The intensity of powdery LLP SrAl2O4: Eu2+, Dy3+, which is tested by the instrument of UWLA(ultra-weak luminescence analyzer), can decay from 43479 to 9570 electronic counts in 5 min, and then descend slowly. The intensity decay of coated film LLP Mn(H2PO4)2, which is tested by the instrument of HANDYSCOPE HS3, can decay quickly at the beginning and then slowly after 400s. These intensity decay results can explain that LLP materials of SrAl2O4:Eu2+, Dy3+ and Mn (H2PO4)2 are suitable for displaying the image by our prototype. A prototype is successfully made by our group for writing English and Chinese words and drawing picture. Arduino Board is used to control two step motors, and X mirror and Y mirror are rotated to reflect the laser beam. An excitation dot is formed on the surface of LLP display screen. By drawing vectorgragh with Coreldraw and convert it into .nc file, the computer runs G-code in CNC (computer numerical control) automatically. Arduino controlled mirror rotation drives the laser beam. The trace of the laser dot is left on the screen and becomes article or graphs in afterglow. The whole device can be energy saving, eyes comfortable, low cost and easy to pick up.
In order to reduce the second rescue injuries and deaths after the mashgas exploding in the mine, a portable imaging interferometer system is designed to detect CO temperature and concentration by the passive and remote measurement. The CO temperature and concentration are detected according to the rotational spectral line of CO gas molecule and the linear relationship between the radiation intensity of gas molecule and the molecule number density, respectively. The optical system is designed, and then its forward is studied in this work. The forward expression is obtained after studying the following four seed models of the optical system: the radiation model of target gas, where CO six emission spectral lines R11-16 are selected from HITRAN08 database; the mine CO gas transmission model in which the absorptions by the water vapor and CO2 molecule, and absorption and scattering by the mine aerosol are calculated by the relevant rules; the filter function model, in which the matched parameters of the band width of 0.5 nm and max transmittance of 0.23 for CO temperature are measured by the method of rotational line of R11-16, and the model of imaging detector CCD in which the infrared CCD of pixel 320320 and the max quantum efficiency of 0.75 are to be used in the optical system. According to the given parameters and MATLAB programming, the forward imaging interference results of CO differentiable six spectrum of R11-16 are obtained. The forward max noise-signal ratio is 268 when the exposure time is 300 s. The max electric count is 1.5105 that is larger than the selected CCD dark noise of 400 e but less than the CCD full charge quantity of 1106 e. The forward result clearly indicates that the optical system can meet the initial design demand. The accuracies of CO temperature and concentration measured by this optical system can reach 2 K and 0.1%, respectively. This portable system can be used to detect not only the mine CO, but also other gases like the pipe smoke, bomb exploding gas, etc. in which the filter and CCD need to be changed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.