Both the oxygen vacancies and surface chemistry can affect the enzyme-like catalytic activities of CeO2-based nanozymes. However, the mechanism of the enzyme-mimetic process is still unclearly elucidated, which is of...
Increasing the permeability of drugs across the cornea is key to improving drug absorption by the eye. This study presents a newly developed in situ gel loaded with nanoparticles, which could achieve controlled drug release and high ocular drug bioavailability by avoiding rapid precorneal clearance. The physicochemical parameters of the formulation were investigated and showed uniform size, physical stability, and favorable rheological and gelling properties. Ex vivo permeation studies revealed significantly higher drug release from the in situ gel loaded with nanoparticles compared to the conventional poloxamer in situ gel and the drug solution. When compared with a marketed formulation, the in situ gel loaded with nanoparticles provided slower controlled release and higher ocular bioavailability of dexamethasone. In conclusion, the developed nanoparticle-loaded in situ gel can successfully increase drug ocular bioavailability by enhancing contact time with the ocular surface and permeation through the cornea.
The trans-ocular barrier is a key factor limiting the therapeutic efficacy of triamcinolone acetonide. We developed a poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) surface modified respectively with 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD), chitosan oligosaccharide and trehalose. Determination of the drug/nanoparticles interactions, characterization of the nanoparticles, in vivo ocular compatibility tests, comparisons of their corneal permeability and their pharmacokinetics in aqueous humor were carried out. Methods: All PLGA NPs were prepared by the single emulsion and evaporation method and the drug-nanoparticle interaction was studied. The physiochemical features and in vitro corneal permeability of NPs were characterized while the aqueous humor pharmacokinetics was performed to evaluate in vivo corneal permeability of NPs. Ocular compatibility of NPs was investigated through Draize and histopathological test. Results: The PLGA NPs with lactide/glycolide ratio of 50:50 and small particle size (molecular weight 10 kDa) achieved optimal drug release and corneal permeability. Surface modification with different oligosaccharides resulted in uniform particle sizes and similar drug-nanoparticle interactions, although 2-HP-β-CD/PLGA NPs showed the highest entrapment efficiency. In vitro evaluation and aqueous humor pharmacokinetics further revealed that 2-HP-β-CD/PLGA NPs had greater trans-ocular permeation and retention compared to chitosan oligosaccharide/PLGA and trehalose/PLGA NPs. No ocular irritation in vivo was detected after applying modified/unmodified PLGA NPs to rabbit's eyes. Conclusion: 2-HP-β-CD/PLGA NPs are a promising nanoplatform for localized ocular drug delivery through topical administration.
Aim: 2-HP-b-cyclodextrin-PLGA nanoparticle complexes were prepared to enhance the aqueous humour delivery of Triamcinolone acetonide. Materials & methods: Drug-loaded 2-HP-b-CD/PLGA nanoparticle complexes prepared by adapting a quasi-emulsion solvent evaporation technique. In vitro drug release, in vitro transcorneal permeation study, histopathological study and in vivo transcorneal penetration of PLGA nanoparticles and 2-HP-b-CD/PLGA nanoparticle complexes were evaluated. Results: Particle size distributions of 2-HP-b-CD/PLGA nanoparticle complexes were 149.4 ± 3.7 nm and presented stable system. Corneal penetration studies revealed steady sustained drug release (Firstorder); 2-HP-b-CD/PLGA nanoparticle complexes increased ocular bioavailability by increasing dispersion in the tear film and improving drug release. Conclusion: 2-HP-b-CD/PLGA nanoparticle complex formulation is a promising alternative to conventional eye drops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.