Co3O4 nanoparticles (Co3O4 NPs), synthesized by the coprecipitation method, showed intrinsic catalase-like, peroxidase-like, and SOD-like activity. The catalytic activity of Co3O4 NPs was much higher than analogous Fe3O4 NPs. Co3O4's mechanisms of catalytic activity were analyzed in detail using the electron spin resonance (ESR) method, which confirmed that Co3O4 NPs don't follow the classical Fenton reactions with hydrogen peroxide the way Fe3O4 NPs do. The high redox potential of Co(3+)/Co(2+) was supposed to be the leading cause of the differences in both activity and mechanism with Fe3O4. Based on the high, peroxidase-like activity, a new immunohistochemical assay was designed in which the avastin antibody was conjugated onto the surface of Co3O4 NPs. The conjugates obtained were used to detect vascular endothelial growth factor (VEGF) that was overexpressed in tumor tissue. When the experimental and control groups were stained, there were clear distinctions between them. This study showed that there are many opportunities to improve the enzyme-like activities of nanomaterials and also to improve their potential applications for biocatalysis and bioassays, especially in relatively harsh conditions.
The development of Financial Technology (FinTech) in areas such as mobile Internet, cloud computing, big data, search engines, and blockchain technology have significantly changed the financial industry. FinTech is expected to overturn the traditional banking business model, forcing banks to upgrade and transform. This study adopts a comparative case study method to contrast and analyze the Industrial and Commercial Bank of China (ICBC) and Citibank. It analyzes the strategies, organizations, HR systems, and product innovations adopted by these two banks in response to the impact of FinTech. This paper proposes an "electric vehicle" mode for ICBC and an "airplane mode" for Citibank. Further, it describes the difficulties encountered by the Chinese banking industry and proposes some feasible ways to upgrade. "Technology power" will become the core competitive concept for the financial institutions of the future.
Host nutrition is an important factor affecting disease progression. Selenium (Se) is an essential trace element for the human body with anti-inflammatory, antioxidant, and immune effects, and Se deficiency increases RNA-virus replication and virulent mutations, which lead to more severe tissue damage and symptoms. Low Se status in the host may be an important cause of health complications induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this article, we describe the metabolic mechanisms by which Se is involved in anti-inflammatory, antioxidant, and immune effects, and review the role and clinical effects of Se in viral infection. We then discuss the potential relationship between Se and coronavirus disease 2019 (COVID-19). The association between soil Se level and the incidence of COVID-19 was observed in different cities of Hubei Province. The incidence of COVID-19 was more than 10 times lower in Se-enriched cities (Enshi, Shiyan, and Xiangyang) than in Se-deficient cities (Suizhou and Xiaogan). Although the relationship between soil Se levels and the incidence of COVID-19 in Hubei still needs further study, these findings provide baseline information demonstrating the effect of Se levels on SARS-CoV-2, which could contribute to the prevention and management of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.