IntroductionOsteoarthritis (OA) is an inflammatory disease of the joints that causes progressive disability in the elderly. Reactive oxygen species (ROS) play an important role in OA development; they may activate the NLRP3 inflammasome, thereby inducing the secretion of proinflammatory IL-1β and IL-18, leading to the aggravation of the downstream inflammatory response. Nrf2 is a key transcription factor that regulates the expression of antioxidant enzymes that protect against oxidative stress and tissue damage. We aimed to explore the underlying mechanism of OA development by investigating NLRP3, ASC, Nrf2, and HO-1 expression in synovia and their regulatory networks in OA.MethodsHuman total knee replacement samples were subjected to histology and micro-CT analysis to determine the pathological changes in the cartilage and subchondral bone and to assess the expression of inflammation-related markers in the synovial tissue by immunohistochemistry (IHC), qRT-PCR, and Western blot. To investigate these pathological changes in an OA animal model, adult Sprague-Dawley rats were subjected to anterior cruciate ligament transection and medial meniscectomy. Articular cartilage and subchondral bone changes and synovial tissue were also determined by the same methods used for the human samples. Finally, SW982 cells were stimulated with lipopolysaccharide (LPS) as an in vitro inflammatory cell model. The correlation between NLRP3 and Nrf2 expression was confirmed by knocking down NLRP3 or Nrf2.ResultsCartilage destruction and subchondral bone sclerosis were found in the OA patients and OA model rats. Significantly increased expression levels of NLRP3, ASC, Nrf2, and HO-1 were found in the synovial tissue from OA patients. NLRP3, ASC, Nrf2, and HO-1 expression in the synovium was also upregulated in the OA group compared with the sham group. Furthermore, the NLRP3, Nrf2, HO-1, IL-1β, and IL-18 expression in LPS-treated SW982 cells was increased in a dose-dependent manner. As expected, the expression of NLRP3 was upregulated, and the expression of IL-1β and IL-18 was downregulated after Nrf2 silencing. However, knocking down NLRP3 did not affect the expression of Nrf2.ConclusionsROS-induced oxidative stress may be the main cause of NLRP3 inflammasome activation and subsequent release of downstream factors during OA development. Nrf2/HO-1 signaling could be a key pathway for the activation of the NLRP3 inflammasome, which may contribute to the progression of OA. Herein, we discovered a novel role of Nrf2/HO-1 signaling in the production of NLRP3, which may facilitate the prevention and treatment of OA.
The development of Financial Technology (FinTech) in areas such as mobile Internet, cloud computing, big data, search engines, and blockchain technology have significantly changed the financial industry. FinTech is expected to overturn the traditional banking business model, forcing banks to upgrade and transform. This study adopts a comparative case study method to contrast and analyze the Industrial and Commercial Bank of China (ICBC) and Citibank. It analyzes the strategies, organizations, HR systems, and product innovations adopted by these two banks in response to the impact of FinTech. This paper proposes an "electric vehicle" mode for ICBC and an "airplane mode" for Citibank. Further, it describes the difficulties encountered by the Chinese banking industry and proposes some feasible ways to upgrade. "Technology power" will become the core competitive concept for the financial institutions of the future.
Osteoporosis is characterized by low bone mass and the degeneration of bone structure, conditions which increase the risk of fracture. Aloin has been shown to affect bone metabolism, but its role in osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. The aim of our study was to determine whether aloin promotes the proliferation and osteogenic differentiation of BMSCs and, if so, whether it acts via activation of the ERK1/2-Runx2 signaling pathway. We found that the different concentrations of aloin tested had no obvious cytotoxic effects on the viability of BMSCs. Under osteogenic induction conditions, aloin increased cellular alkaline phosphatase activity, promoted BMSC mineralization, and increased osteogenic-related gene expression. In addition, treating the BMSCs with the signal transduction inhibitor PD98059 (ERK1/2) effectively attenuated Runx2 activation in these cells and also suppressed osteoblastic differentiation. Overall, our study demonstrates that aloin promotes osteogenic differentiation of BMSCs through activation of the ERK1/2-Runx2 signaling pathway.
Poly-(lactide-co-glycolide acid) (PLGA) has been widely investigated as scaffold material for bone tissue engineering owing to its biosafety, biodegradability, and biocompatibility. However, the bioinert surface of PLGA may fail in regulating cellular behavior and directing osteointegration between the scaffold and the host tissue. In this article, oxidized chondroitin sulfate (oCS) and type I collagen (Col I) were assembled onto PLGA surface via layer by layer technique (LbL) as an adhesive coating for the attachment of inorganic minerals. The multilayer-modified PLGA scaffold was mineralized in vitro to ensure the deposition of nanohydroxyapatite (nHAP). It was found that nHAP crystals were more uniformly and firmly attached on the multilayer-modified PLGA as compared with the pure PLGA scaffold, which remarkably improved PLGA surface and mechanical properties. Additionally, in vitro biocompatibility of PLGA scaffold, in terms of bone mesenchymal stem cells (BMSCs) attachment, spreading and proliferation was greatly enhanced by nHAP coating and multilayer deposition. Furthermore, the fabricated composite scaffold also shows the ability to promote the osteogenic differentiation of BMSCs through the up-regulation of osteogenic marker genes. Thus, this novel biomimetic composite scaffold might achieve a desirable therapeutic result for bone tissue regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2714-2725, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.