Background Pancreatic cancer (PC) is highly malignant. Chemotherapy is the main treatment strategy, especially for patients with advanced PC. However, chemoresistance has always been a frequently encountered bottleneck. Hence, there is an urgent need to enhance the sensitivity of PC to gemcitabine (GEM). Results We demonstrated that SH3BP5-AS1 was significantly upregulated in GEM-resistant PC and predicted a poorer prognosis. SH3BP5-AS1 stability was regulated by ALKBH5/IGF2BP1-mediated m6A modification. Loss of SH3BP5-AS1 reduced PC cell migration and invasion and enhanced the sensitivity of PC to GEM, as confirmed by gain- and loss-of-function assays in vitro and in vivo. Bioinformatics analysis revealed that SH3BP5-AS1 acted as a ceRNA against miR-139-5p and directly targeted CTBP1, affecting the biological behavior of PC cells. The mechanistic studies revealed that the upregulation of SH3BP5-AS1 increased CTBP1 expression by directly activating the Wnt signaling pathway, promoting GEM resistance. Conclusions This study revealed that SH3BP5-AS1 activated Wnt signaling pathway by sponging miR-139-5p, upregulating CTBP1 expression, and contributing to the sensitivity of PC cells to GEM. SH3BP5-AS1 might be a potential target for PC therapy.
Background Alternative splicing (AS) of genes has been found to affect gene stability, and its abnormal regulation can lead to tumorigenesis. CELF2 is a vital splicing factor to participate in mRNA alternative splicing. Its downregulation has been confirmed to promote the occurrence and development of pancreatic cancer (PC). However, the regulatory role and mechanisms in PC has not been elucidated. Results CELF2 was downregulated in PC tissues, which affected tumor TNM stage and tumor size, and low expression of CELF2 indicated a poor prognosis of PC. In vivo and in vitro experiments showed that abnormal expression of CELF2 affected the stemness, apoptosis, and proliferation of PC cells. Furthmore, we also found that CELF2 was targeted by ALKBH5 for m6A modification, leading to CELF2 degradation by YTHDF2. Bioinformatic analysis of AS model based on the TCGA database indicated that CELF2 could target CD44 to form different spliceosomes, thereby affecting the biological behavior of PC cells. The conversion of CD44s to CD44V is the key to tumorigenesis. Transcriptomic analysis was conducted to reveal the mechanism of CELF2-mediated CD44 AS in PC. We found that CELF2-mediated splicing of CD44 led to changes in the level of endoplasmic reticulum stress, further regulating the endoplasmic reticulum-associated degradation (ERAD) signaling pathway, thereby affecting apoptosis and cell stemness. In addition, ERAD signaling pathway inhibitor, EerI, could effectively reverse the effect of CD44 on tumors. Conclusions This study indicates that N6-methyladenosine-mediated CELF2 promotes AS of CD44, affecting the ERAD pathway and regulating the biological behavior of PC cells. CELF2 is expected to be a new target for targeted-drug development.
Background Alternative splicing (AS) of genes has been found to affect gene stability, and its abnormal regulation can lead to tumorigenesis. CELF2 is a vital splicing factor to participate in mRNA alternative splicing. Its downregulation has been confirmed to promote the occurrence and development of pancreatic cancer (PC). However, the regulatory role and mechanisms in PC has not been elucidated. Results CELF2 was downregulated in PC tissues, which affected tumor TNM stage and tumor size, and low expression of CELF2 indicated a poor prognosis of PC. In vivo and in vitro experiments showed that abnormal expression of CELF2 affected the stemness, apoptosis, and proliferation of PC cells. Furthmore, we also found that CELF2 was targeted by ALKBH5 for m6A modification, leading to CELF2 degradation by YTHDF2. Bioinformatic analysis of AS model based on the TCGA database indicated that CELF2 could target CD44 to form different spliceosomes, thereby affecting the biological behavior of PC cells. The conversion of CD44s to CD44V is the key to tumorigenesis. Transcriptomic analysis was conducted to reveal the mechanism of CELF2-mediated CD44 AS in PC. We found that CELF2-mediated splicing of CD44 led to changes in the level of endoplasmic reticulum stress, further regulating the endoplasmic reticulum-associated degradation (ERAD) signaling pathway, thereby affecting apoptosis and cell stemness. In addition, ERAD signaling pathway inhibitor, EerI, could effectively reverse the effect of CD44 on tumors. Conclusions This study indicates that N6-methyladenosine-mediated CELF2 promotes AS of CD44, affecting the ERAD pathway and regulating the biological behavior of PC cells. CELF2 is expected to be a new target for targeted-drug development
Background: Pancreatic cancer (PC) is highly malignant. Chemotherapy is the main treatment strategy, especially for patients with advanced PC. However, chemoresistance has always been a frequently encountered bottleneck. Hence, there is an urgent need to enhance the sensitivity of PC to gemcitabine (GEM).Results: We demonstrated that SH3BP5-AS1 was significantly upregulated in GEM-resistant PC and predicted a poorer prognosis. SH3BP5-AS1 stability was regulated by ALKBH5/IGF2BP1-mediated m6A modification. Loss of SH3BP5-AS1 reduced PC cell migration and invasion and enhanced the sensitivity of PC to GEM, as confirmed by gain- and loss-of-function assays in vitro and in vivo. Bioinformatics analysis revealed that SH3BP5-AS1 acted as a ceRNA against miR-139-5p and directly targeted CTBP1, affecting the biological behavior of PC cells. The mechanistic studies revealed that the upregulation of SH3BP5-AS1 increased CTBP1 expression by directly activating the Wnt signaling pathway, promoting GEM resistance.Conclusions: This study revealed that SH3BP5-AS1 activated Wnt signaling pathway by sponging miR-139-5p, upregulating CTBP1 expression, and contributing to the sensitivity of PC cells to GEM. SH3BP5-AS1 might be a potential target for PC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.