There is an inadvertent typo in Eq. (3) where an extra factor of 1 2 was introduced accidentally on the right-hand side of the equation, which was written as ω = 1 2 × v. The correct expression should readwhich is the definition we used to perform all the numerical computations. All the results, figures, and discussions are consistent with the above definition in Eq.(3). This error also propagated into a number of places in the rest of the paper, as detailed in the following: (1) In the sentence after Eq. (3), "the vorticity is identical to the rotational angular velocity" should be changed to "the vorticity is twice the rotational angular velocity." (2) In the paragraph before that of Eq. (4), there should be a factor 1 2 in the in-line expressions of v and J that contain the variable ω. The correct forms should be(3) In Eq. (7), the extra factor of 2 at the beginning of the second and third lines should be removed. The correct form should beThe rest of the paper is unaffected.We thank Hui Li and Qun Wang for pointing out the important typo related to Eq. (3) in a previous version of this paper.2469-9985/2017/95(4)/049904(1) 049904-1
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR’s scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M3RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
Rocks in underground projects at great depth, which are under high static stresses, may be subjected to dynamic disturbance at the same time. In our previous work (Li et al. Int J Rock Mech Min Sci 45(5):739-748, 2008), the dynamic compressive behaviour of pre-stressed rocks was investigated using coupled-load equipment. The current work is devoted to the investigation of the dynamic tensile behaviour of granite rocks under coupled loads using the Brazilian disc (BD) method with the aid of a high-speed camera. Through wave analyses, stress measurements and crack photography, the fundamental problems of BD tests, such as stress equilibrium and crack initiation, were investigated by the consideration of different loading stresses with abruptly or slowly rising stress waves. The specially shaped striker method was used for the coupled-load test; this generates a slowly rising stress wave, which allows gradual stress accumulation in the specimen, whilst maintaining the load at both ends of the specimen in an equilibrium state. The test results showed that the tensile strength of the granite under coupled loads decreases with increases in the static pre-stresses, which might lead to modifications of the blasting design or support design in deep underground projects. Furthermore, the failure patterns of specimens under coupled loads have been investigated. Travelling time of the stress wave (s) r t Dynamic tensile strength of the specimen (MPa) r c Dynamic compressive strength of the specimen (MPa) r 0 Amplitude of the assumed stress pulse (MPa) P Static force applied on the specimen (N) P c Equivalent force applied on the specimen under coupled loads (N)
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.