As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite.
Background: Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. Results: Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme's higher salinity tolerance is associated with higher Na + and Ca 2+ accumulation under normal conditions and further increase of Na + under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K + retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na + toxicity. We sequenced the transcriptome of the two cultivars under both normal and salttreated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum's transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. "Oxidation-reduction process" and "nucleic acid binding" are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca 2+ signaling transduction out of Na + accumulation, which may be another contributor to Supreme's higher salinity tolerance. Conclusion: Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance.
Odd-numbered primary alcohols are components of plant cuticular wax, but their biosynthesis remains unknown.We isolated a rice wax crystal-sparse leaf 5 (WSL5) gene using a map-based cloning strategy. The function of WSL5 was illustrated by overexpression and knockout in rice, heterologous expression in Arabidopsis and transient expression in tobacco leaves.WSL5 is predicted to encode a cytochrome P450 family member CYP96B5. The wsl5 mutant lacked crystalloid platelets on the surface of cuticle membrane, and its cuticle membrane was thicker than that of the wild-type. The wsl5 mutant is more tolerant to drought stress. The load of C 23 -C 33 alkanes increased, whereas the C 29 primary alcohol reduced significantly in wsl5 mutant and WSL5 knockout transgenic plants. Overexpression of WSL5 increased the C 29 primary alcohol and decreased alkanes in rice leaves. Heterologous expression of WSL5 increased the C 29 primary alcohol and decreased alkanes, secondary alcohol, and ketone in Arabidopsis stem wax. Transient expression of WSL5 in tobacco leaves also increased the production C 29 primary alcohol.WSL5 catalyzes the terminal hydroxylation of alkanes, yielding odd-numbered primary alcohols, and is involved in the formation of epidermal wax crystals on rice leaf, affecting drought sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.