This letter investigates a power allocation problem in a downlink single-input single-output (SISO) non-orthogonal multiple access (NOMA) system. Our goal is to maximize the sum rate of users subject to minimum user rate requirements. We rigorously prove the optimal user decoding order, and show that the sum rate maximization problem is convex which guarantees the globally optimal solution. Further by analyzing the Karush-Kuhn-Tucker (KKT) conditions, we reveal that the optimal power allocation strategy is to allocate additional power to the user with the best channel gain, while other users are allocated with minimum power to maintain their minimum rate requirements. Numerical results validate the performance gain by the proposed NOMA compared to conventional schemes.
In this paper, unmanned aerial vehicles (UAVs) and intelligent reflective surface (IRS) are utilized to support terahertz (THz) communications. To this end, the joint optimization of UAV's trajectory, the phase shift of IRS, the allocation of THz sub-bands, and the power control is investigated to maximize the minimum average achievable rate of all the users. An iteration algorithm based on successive Convex Approximation with the Rate constraint penalty (CAR) is developed to obtain UAV's trajectory, and the IRS phase shift is formulated as a closed-form expression with introduced pricing factors. Simulation results show that the proposed scheme significantly enhances the rate performance of the whole system.
This letter investigates the power control and channel assignment problem in device-to-device (D2D) communications underlaying a non-orthogonal multiple access (NOMA) cellular network. With the successive interference cancellation decoding order constraints, our target is to maximize the sum rate of D2D pairs while guaranteeing the minimum rate requirements of NOMA-based cellular users.Specifically, the optimal conditions for power control of cellular users on each subchannel are derived first. Then, based on these results, we propose a dual-based iterative algorithm to solve the resource allocation problem. Simulation results validate the superiority of proposed resource allocation algorithm over the existing orthogonal multiple access scheme.
Index TermsD2D, NOMA, power control, channel assignment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.