The lack of response to treatment in most lung cancer patients suggests the value of broadening the benefit of anti–PD-1/PD-L1 monotherapy. Judicious dosing of antiangiogenic agents such as apatinib (VEGFR2-TKI) can modulate the tumor immunosuppressive microenvironment, which contributes to resistance to anti–PD-1/PD-L1 treatment. We therefore hypothesized that inhibiting angiogenesis could enhance the therapeutic efficacy of PD-1/PD-L1 blockade. Here, using a syngeneic lung cancer mouse model, we demonstrated that low-dose apatinib alleviated hypoxia, increased infiltration of CD8+ T cells, reduced recruitment of tumor-associated macrophages in tumor and decreased TGFβ amounts in both tumor and serum. Combining low-dose apatinib with anti–PD-L1 significantly retarded tumor growth, reduced the number of metastases, and prolonged survival in mouse models. Anticancer activity was evident after coadministration of low-dose apatinib and anti–PD-1 in a small cohort of patients with pretreated advanced non–small cell lung cancer. Overall, our work shows the rationale for the treatment of lung cancer with a combination of PD-1/PD-L1 blockade and low-dose apatinib.
Immune checkpoint inhibitors targeting the programmed cell death receptor/ligand 1 (PD‐1/PD‐L1) pathway have profoundly improved the clinical management of non‐small‐cell lung cancer (NSCLC). Nevertheless, the superiority of single‐agent PD‐1/PD‐L1 inhibitors in pretreated EGFR mutant patients has turned out to be moderate. One proposed mechanism for poor response to immune checkpoint inhibitors is an immunosuppressive tumor microenvironment. Therefore, we utilized two autochthonous EGFR‐driven lung tumor models to investigate dynamic microenvironmental responses to EGFR‐TKI treatment. We observed that at an early stage, sensitive EGFR‐TKIs caused obvious tumor shrinkage accompanied by increased cytotoxic CD8+ T cells and dendritic cells, eradication of Foxp3+ Tregs, and inhibition of M2‐like polarization of macrophages. However, the tumor microenvironmental changes that may be most beneficial for combination treatment with immune‐mediated anticancer approaches were only temporary and disappeared as treatment continued. Meanwhile, the level of myeloid‐derived suppressor cells (MDSCs), particularly mononuclear MDSCs, was consistently elevated throughout the treatment. Analysis of inflammatory factors in serum showed that EGFR‐TKIs increased the levels of IL‐10 and CCL‐2. Our study systematically analyzed dynamic changes in tumor microenvironments responding to EGFR‐TKIs in vivo. The results have implications for combination therapy using EGFR‐TKIs. The optimal sequence of the treatment and strategies that modulate the tumor microenvironment to a state that may favor antitumor immune responses need to be considered when designing clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.