Regulation of tobacco products is rapidly evolving. Understanding public sentiment in response to changes is very important as authorities assess how to effectively protect population health. Social media systems are widely recognized to be useful for collecting data about human preferences and perceptions. However, how social media data may be used, in rapid policy change settings, given challenges of narrow time periods and specific locations and non-representative the population using social media is an open question. In this paper we apply quasi-experimental designs, which have been used previously in observational data such as social media, to control for time and location confounders on social media, and then use content analysis of Twitter and Reddit posts to illustrate the content of reactions to tobacco flavor bans and the effect of taxation on e-cigarettes. Conclusions distill the potential role of social media in settings of rapidly changing regulation, in complement to what is learned by traditional denominator-based representative surveys.
Recipe recommendation systems play an essential role in helping people decide what to eat. Existing recipe recommendation systems typically focused on content-based or collaborative filtering approaches, ignoring the higher-order collaborative signal such as relational structure information among users, recipes and food items. In this paper, we formalize the problem of recipe recommendation with graphs to incorporate the collaborative signal into recipe recommendation through graph modeling. In particular, we first present URI-Graph, a new and large-scale user-recipe-ingredient graph. We then propose RecipeRec, a novel heterogeneous graph learning model for recipe recommendation. The proposed model can capture recipe content and collaborative signal through a heterogeneous graph neural network with hierarchical attention and an ingredient set transformer. We also introduce a graph contrastive augmentation strategy to extract informative graph knowledge in a self-supervised manner. Finally, we design a joint objective function of recommendation and contrastive learning to optimize the model. Extensive experiments demonstrate that RecipeRec outperforms state-of-the-art methods for recipe recommendation. Dataset and codes are available at https://github.com/meettyj/RecipeRec.
Recipe recommendation systems play an important role in helping people find recipes that are of their interest and fit their eating habits. Unlike what has been developed for recommending recipes using content-based or collaborative filtering approaches, the relational information among users, recipes, and food items is less explored. In this paper, we leverage the relational information into recipe recommendation and propose a graph learning approach to solve it. In particular, we propose HGAT, a novel hierarchical graph attention network for recipe recommendation. The proposed model can capture user history behavior, recipe content, and relational information through several neural network modules, including type-specific transformation, node-level attention, and relation-level attention. We further introduce a ranking-based objective function to optimize the model. Thorough experiments demonstrate that HGAT outperforms numerous baseline methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.