The
discovery of the enhancement of Raman scattering by molecules
adsorbed on nanostructured metal surfaces is a landmark in the history
of spectroscopic and analytical techniques. Significant experimental
and theoretical effort has been directed toward understanding the
surface-enhanced Raman scattering (SERS) effect and demonstrating
its potential in various types of ultrasensitive sensing applications
in a wide variety of fields. In the 45 years since its discovery,
SERS has blossomed into a rich area of research and technology, but
additional efforts are still needed before it can be routinely used
analytically and in commercial products. In this Review, prominent
authors from around the world joined together to summarize the state
of the art in understanding and using SERS and to predict what can
be expected in the near future in terms of research, applications,
and technological development. This Review is dedicated to SERS pioneer
and our coauthor, the late Prof. Richard Van Duyne, whom we lost during
the preparation of this article.
Two-dimensional metal nanoparticle arrays are normally constructed at liquid-oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, which allows quantitative detection of chemical species with molecular specificity and single-molecule sensitivity. These useful properties can be further combined with...
2D arrays of metal nanoparticles formed at liquid–liquid interfaces have been fixed in situ to a thin polymer support to create freestanding large (cm2) composite films where the particles remain exposed rather than being trapped within the polymer. Applications of these flexible robust 2D nanoparticle arrays as sensors, thin film conductors, antimicrobial coatings, and dip‐in catalysts are shown.
Electron/proton
transfers in water proceeding from ground/excited
states are the elementary reactions of chemistry. These reactions
of an iconic class of molecules—polypyridineRu(II)—are
now controlled by capturing or releasing three of them with hosts
that are shape-switchable. Reversible erection or collapse of the
host walls allows such switchability. Some reaction rates are suppressed
by factors of up to 120 by inclusive binding of the metal complexes.
This puts nanometric coordination chemistry in a box that can be open
or shut as necessary. Such second-sphere complexation can allow considerable
control to be exerted on photocatalysis, electrocatalysis, and luminescent
sensing involving polypyridineRu(II) compounds. The capturing states
of hosts are symmetry-matched to guests for selective binding and
display submicromolar affinities. A perching complex, which is an
intermediate state between capturing and releasing states, is also
demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.