Chrysanthemums (Chrysanthemum morifolium Ramat.) are famous ornamental crops with high medicinal and industrial values. The inflorescence and leaf traits are key factors that affect the yield and quality of chrysanthemum. However, the genetic improvement of those traits is slow within chrysanthemum because of its hexaploidy, high heterozygosity and enormous genome. To study the genetic control of the important traits and facilitate marker-assisted selection (MAS) in chrysanthemum, it is desirable to populate the genetic maps with an abundance of transferrable markers such as microsatellites (SSRs). A genetic map was constructed with expressed sequence tag–simple sequence repeat (EST-SSR) markers in an F1 progeny of 192 offspring. A total of 1000 alleles were generated from 223 EST-SSR primer pairs. The preliminary maternal and paternal maps consisted of 265 marker alleles arranged into 49 and 53 linkage groups (LGs), respectively. The recombined parental maps covered 906.3 and 970.1 cM of the genome, respectively. Finally, 264 polymorphic loci were allocated to nine LGs. The integrated map spanned 954.5 cM in length with an average genetic distance of 3.6 cM between two neighbouring loci. Quantitative trait loci (QTLs) analysis was performed using the integrated map for inflorescence diameter (ID), central disc flower diameter (CDFD), number of whorls of ray florets (NWRF), number of ray florets (NRF), number of disc florets (NDF), number of florets (NF), ray floret length (RFL), ray floret width (RFW), ray floret length/width (RFL/W), leaf length (LL), leaf width (LW) and leaf length/width (LL/W). Overall, 36 (21 major) QTLs were identified. The successful mapping of inflorescence and leaf traits QTL demonstrated the utility of the new integrated linkage map. This study is the first report of a genetic map based on EST-SSR markers in chrysanthemum. The EST-SSR markers, genetic map and QTLs reported here could be valuable resources in implementing MAS for chrysanthemums in breeding programs.
We developed 17 microsatellite loci from Lagerstroemia caudata to analyze the genetic diversity and population structure of this endangered species. These loci provided markers with polymorphisms of 2-11 alleles per locus within 48 individuals from Hubei, China. The observed and expected heterozygosities ranged from 0.06 to 0.77 and 0.31 to 0.83, respectively. Most cross-species amplification was successful among five Lagerstroemia species and one Lawsonia species. These SSR loci were expected to be useful tools for population studies both in L. caudata and related species and genera.
Chrysanthemums (Chrysanthemum morifolium Ramat.) are ornamental flowers, which are famous worldwide. The mode of inheritance has great implications for the genetic analysis of polyploid species. However, genetic analysis of chrysanthemum has been hampered because of its controversial inheritance mode (disomic or hexasomic). To classify the inheritance mode of chrysanthemums, an analysis of three approaches was carried out in an F1 progeny of 192 offspring using 223 expressed sequence tag-simple sequence repeat (EST-SSR) markers. The analysis included segregation analysis, the ratio of simplex marker alleles linked in coupling to repulsion, as well as the transmission and segregation patterns of EST-SSR marker alleles. After segregation analysis, 204 marker alleles fit hexasomic inheritance and 150 marker alleles fit disomic inheritance, showing that marker alleles were inherited predominantly in a hexasomic manner. Furthermore, the results of the analysis of allele configuration and segregation behavior of five EST-SSR markers also suggested random pairing of chromosomes. Additionally, the ratio of simplex marker alleles linked in coupling to repulsion was 1:0, further supporting hexasomic inheritance. Therefore, it could be inferred that chrysanthemum is a complete or near-complete hexasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.