On 22 June 2017, an extreme warm-sector rainfall event hit the western coastal area of South China, with maximum hourly and 12-h rainfall accumulations of 189.4 and 464.8 mm, respectively, which broke local historical records. Multisource observations were used to reveal multiscale processes contributing to the extreme rainfall. The results showed that a marine boundary layer jet (BLJ) coupled with a synoptic low-level jet (LLJ) inland played an important role in the formation of an extremely humid environment with a very low lifting condensation level of near-surface air. Under the favorable pre-convective conditions, convection was initialized at a mesoscale convergence line, aided by topographic lifting in the evening. During the nocturnal hours, the rainstorm developed and was maintained by a quasi-stationary mesoscale outflow boundary, which continuously lifted warm, moist air transported by the enhanced BLJ. When producing the extreme rainfall rates, the storm possessed relatively weak convection, with the 40 dBZ echo top hardly reaching 6 km. The extreme rainfall was produced mainly by the warm rain microphysical processes, mainly because the humid environment and the deep warm cloud layer facilitated the clouds’ condensational growth and collision–coalescence, and also reduced rain evaporation. As the storm evolved, the raindrop concentration increased rapidly from its initial stage and remained high until its weakening stage, but the mean raindrop size changed little. The extreme rain was characterized by the highest concentration of raindrops during the storm’s lifetime with a mean size of raindrops slightly larger than the maritime regime.
On 1 June 2021, a heavy rainstorm hit the coast of South China (148.6 mm in 1 h, 361 mm over 12 h). The storm process was successively affected by two convective systems (CSs). The initial convection of the two CSs occurred at a similar location; however, they subsequently showed different evolution characteristics. Based on multi-source data, including dual-polarimetric radars, wind profiling radars, sounding, and automatic weather stations, we explored the differences in the key characteristics of these two CSs. It was found that the convection was initially triggered at a similar location for both CSs, closely related to the mesoscale boundary and the hilly terrain. After formation, CS1 moved eastward to the regions with lower surface temperature and weaker lower-level convergence but similar humidity, which means the environmental conditions for sustaining the CS became less favorable. As a result, CS1 dissipated rapidly and only lasted for about 90 min, resulting in 5% of the total precipitation of the overall storm. In contrast, during the lifespan of CS2, the southerly wind over the South China Sea became stronger. This caused an intense lower-level convergence zone along the coastal region of Guangdong Province, which provided favorable dynamic conditions for maintaining CS2. Favored by the strong coastal convergence and abundant moisture, new convective cells (CCs) were generated continuously and merged with CS2, acting as another favorable condition for its sustainment. Overall, CS2 lasted for 8 h, and its precipitation accounted for 95% of the total rainfall. In CS1, CCs showed a notable evaporation process below 4 km, manifested by the large raindrops. However, in CS2, the CCs had a higher concentration of small raindrops and higher ice and liquid water content. Since CS2 was close to the coastal region, the warm local environment promoted convection, leading to intense precipitation. In addition, the riming and melting processes were active, leading to a high precipitation efficiency and strong local precipitation during a short period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.