Blocking of Connexin43 hemichannels, the main gap junction protein located on astrocytes in the central nervous system, has been shown to reduce neural injury in a number of models. We demonstrated previously that local administration of a Connexin43 mimetic peptide, Peptide5, reduces secondary tissue damage after spinal cord injury (SCI). Here, we investigated whether acute systemic delivery of Peptide5 is also protective in a model of SCI. Rats were subjected to a mild spinal cord contusion using the Multicentre Animal Spinal Cord Injury Study impactor and were injected intraperitoneally with Peptide5 or a scrambled peptide immediately and at 2 h and 4 h post-injury. Rats were tested for locomotor recovery and pain hypersensitivity and euthanized at 8 h, 24 h, two weeks, or six weeks post-injury. Compared with control rats, Peptide5 treated rats showed significant improvement in hindlimb locomotor function between three and six weeks post-injury and reductions in at-level mechanical allodynia at weeks one and six post-injury. Immunohistochemistry showed that Peptide5 treatment led to a reduction in total Connexin43 and increased phosphorylated Connexin43 at 8 h compared with scrambled peptide. At two and six weeks, lesion size, the astrocytic and the activated macrophage, and/or microglial response were all decreased in the Peptide5 animals. In addition, neuronal cell numbers were higher in the Peptide5 animals compared with the scrambled peptide treated rats at two and six weeks. These results show for the first time that systemic administration of Peptide5 to block the pathological opening of Connexin43 hemichannels is a feasible treatment strategy in this setting, ameliorating the secondary SCI.
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide. Mild TBI may lead to neuropsychiatric sequelae, including memory loss and motor impairment. Mitochondrial dysfunction and oxidative stress have a contributory role in several neurological disorders; however, their association with mitophagy in mild TBI is unclear. TBI was induced in female Sprague Dawley (SD) rats using a New York University Impactor (10 g, impactor head 2.5 mm diameter, weight drop 50 mm) and compared to sham surgery controls. The novel object recognition and error ladder tests were performed at 24 hours and for 6 weeks post injury, and the brains were examined histologically to confirm the extent of injury. Mitochondria manganese superoxide dismutase (MnSOD) and the oxidative phosphorylation (OXPHOS) complexes I-V (CI-CV), as well as mitophagy markers, dynamin related protein 1 (DRP-1), LC3A/B and PTEN-induced putative kinase 1 (PINK-1), were measured in the penumbra by western blot. At 24 hours sham rats performed as expected on a novel object recognition test while TBI rats showed cognitive deficits at the early time points. TBI rats also showed more early motor deficits on a horizontal ladder, compared with the sham rats. MnSOD, OXPHOS CI, CIII and CV protein levels were significantly lower in the TBI group at 24 hours. DRP-1, LC3A/B I and II, and PINK-1 were increased at 6 weeks suggesting abnormal mitophagy. Moderate TBI caused immediate cognitive and mild motor functional deficits in the rats that did not persist. Reduced antioxidative capacity and possibly compromised mitochondrial function may affect the long term functional recovery.
Gap junctions are specialized intercellular communication channels that are formed by two hexameric connexin hemichannels, one provided by each of the two adjacent cells. Gap junctions and hemichannels play an important role in regulating cellular metabolism, signaling, and functions in both normal and pathological conditions. Following spinal cord injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord including severing of axon tracts and rapid cell death. The initial mechanical disruption is followed by multiple secondary cascades that cause further tissue loss and dysfunction. Recent studies have implicated connexin proteins as playing a critical role in the secondary phase of SCI by propagating death signals through extensive glial networks. In this review, we bring together past and current studies to outline the distribution, changes and roles of various connexins found in neurons and glial cells, before and in response to SCI. We discuss the contribution of pathologically activated connexin proteins, in particular connexin 43, to functional recovery and neuropathic pain, as well as providing an update on potential connexin specific pharmacological agents to treat SCI.
It’s a challenge for detecting the therapeutic targets of a polypharmacological drug from variations in the responsed networks in the differentiated populations with complex diseases, as stable coronary heart disease. Here, in an adaptive, 31-center, randomized, double-blind trial involving 920 patients with moderate symptomatic stable angina treated by 14-day Danhong injection(DHI), a kind of polypharmacological drug with high quality control, or placebo (0.9% saline), with 76-day following-up, we firstly confirmed that DHI could increase the proportion of patients with clinically significant changes on angina-frequency assessed by Seattle Angina Questionnaire (ΔSAQ-AF ≥ 20) (12.78% at Day 30, 95% confidence interval [CI] 5.86–19.71%, P = 0.0003, 13.82% at Day 60, 95% CI 6.82–20.82%, P = 0.0001 and 8.95% at Day 90, 95% CI 2.06–15.85%, P = 0.01). We also found that there were no significant differences in new-onset major vascular events (P = 0.8502) and serious adverse events (P = 0.9105) between DHI and placebo. After performing the RNA sequencing in 62 selected patients, we developed a systemic modular approach to identify differentially expressed modules (DEMs) of DHI with the Zsummary value less than 0 compared with the control group, calculated by weighted gene co-expression network analysis (WGCNA), and sketched out the basic framework on a modular map with 25 functional modules targeted by DHI. Furthermore, the effective therapeutic module (ETM), defined as the highest correlation value with the phenotype alteration (ΔSAQ-AF, the change in SAQ-AF at Day 30 from baseline) calculated by WGCNA, was identified in the population with the best effect (ΔSAQ-AF ≥ 40), which is related to anticoagulation and regulation of cholesterol metabolism. We assessed the modular flexibility of this ETM using the global topological D value based on Euclidean distance, which is correlated with phenotype alteration (r2: 0.8204, P = 0.019) by linear regression. Our study identified the anti-angina therapeutic module in the effective population treated by the multi-target drug. Modular methods facilitate the discovery of network pharmacological mechanisms and the advancement of precision medicine. (ClinicalTrials.gov identifier: NCT01681316).
Following mild traumatic brain injury (mTBI), the ionic homeostasis of the central nervous system (CNS) becomes imbalanced. Excess Ca2+ influx into cells triggers molecular cascades, which result in detrimental effects. The authors assessed the effects of a combination of ion channel inhibitors (ICI) following repeated mTBI (rmTBI). Adult female rats were subjected to two rmTBI weight-drop injuries 24 h apart, sham procedures (sham), or no procedures (normal). Lomerizine, which inhibits voltage-gated calcium channels, was administered orally twice daily, whereas YM872 and Brilliant Blue G, inhibiting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and P2X7 receptors, respectively, were delivered intraperitoneally every 48 h post-injury. Vehicle treatment controls were included for rmTBI, sham, and normal groups. At 11 days following rmTBI, there was a significant increase in the time taken to cross the 3 cm beam, as a sub-analysis of neurological severity score (NSS) assessments, compared with the normal control (p < 0.05), and a significant decrease in learning-associated improvement in rmTBI in Morris water maze (MWM) trials relative to the sham (p < 0.05). ICI-treated rmTBI animals were not different to sham, normal controls, or rmTBI treated with vehicle in all neurological severity score and Morris water maze assessments (p > 0.05). rmTBI resulted in increases in microglial cell density, antioxidant responses (manganese-dependent superoxide dismutase (MnSOD) immunoreactivity), and alterations to node of Ranvier structure. ICI treatment decreased microglial density, MnSOD immunoreactivity, and abnormalities of the node of Ranvier compared with vehicle controls (p < 0.01). The authors’ findings demonstrate the beneficial effects of the combinatorial ICI treatment on day 11 post-rmTBI, suggesting an attractive therapeutic strategy against the damage induced by excess Ca2+ following rmTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.